• Photonics Research
  • Vol. 8, Issue 6, 1049 (2020)
Jae Hyeok Lee1、†, Abu Bashar Mohammad Hamidul Islam1、†, Tae Kyoung Kim, Yu-Jung Cha, and Joon Seop Kwak*
Author Affiliations
  • Department of Printed Electronics Engineering, Sunchon National University Jeonnam 540-742, South Korea
  • show less
    DOI: 10.1364/PRJ.385249 Cite this Article Set citation alerts
    Jae Hyeok Lee, Abu Bashar Mohammad Hamidul Islam, Tae Kyoung Kim, Yu-Jung Cha, Joon Seop Kwak. Impact of tin-oxide nanoparticles on improving the carrier transport in the Ag/p-GaN interface of InGaN/GaN micro-light-emitting diodes by originating inhomogeneous Schottky barrier height[J]. Photonics Research, 2020, 8(6): 1049 Copy Citation Text show less
    References

    [1] J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J. O’shea, M. J. Lu-dowise, G. Christenson, Y.-C. Shen, C. Lowery, P. S. Martin, S. Subramanya, W. Gotz, N. F. Gardner, R. S. Kern, S. A. Stockman. High-power AlGaInN flip-chip light-emitting diodes. Appl. Phys. Lett., 78, 3379-3381(2001).

    [2] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, S. L. Rudaz. Illumination with solid state lighting technology. IEEE J. Sel. Top. Quantum Electron., 8, 310-320(2002).

    [3] C. Weisbuch, M. Piccardo, L. Martinelli, J. Iveland, J. Peretti, J. S. Speck. The efficiency challenge of nitride light-emitting diodes for lighting. Phys. Status Solidi A, 212, 899-913(2015).

    [4] S. G. Grötsch, M. Brink, R. Fiederling, T. Liebetrau, I. Möllers, J. Moisel, A. Pfeuffer. “,” SAE Technical Paper 2016-01-1410 ()(2016).

    [5] M. H. Crawford. LEDs for solid-state lighting: performance challenges and recent advances. IEEE J. Sel. Top. Quantum Electron., 15, 1028-1040(2009).

    [6] J. Piprek. Efficiency droop in nitride-based light-emitting diodes. Phys. Status Solidi A, 207, 2217-2225(2010).

    [7] J. Cho, E. F. Schubert, J. K. Kim. Efficiency droop in light-emitting diodes: challenges and countermeasures. Laser Photon. Rev., 7, 408-421(2013).

    [8] Y. Zhang, H. Zheng, E. Guo, Y. Cheng, J. Ma, L. Wang, Z. Liu, X. Yi, G. Wang, J. Li. Effects of light extraction efficiency to the efficiency droop of InGaN-based light-emitting diodes. J. Appl. Phys., 113, 014502(2013).

    [9] W.-J. Liu, X.-L. Hu, J.-Y. Zhang, G.-E. Weng, X.-Q. Lv, H.-J. Huang, M. Chen, X.-M. Cai, L.-Y. Ying, B.-P. Zhang. Low-temperature bonding technique for fabrication of high-power GaN-based blue vertical light-emitting diodes. Opt. Mater., 34, 1327-1329(2012).

    [10] L.-B. Chang, C.-C. Shiue, M.-J. Jeng. Formation process of high reflective Ni/Ag/Au ohmic contact for GaN flip-chip light-emitting diodes. Appl. Phys. Lett., 90, 163515(2007).

    [11] L. Yin, Y. Bai, T. Nan, J. Zhang. Performance enhancement of gallium-nitride-based flip-chip light-emitting diode with through-via structure. Phys. Status Solidi A, 212, 1725-1730(2015).

    [12] H.-Y. Lin, C.-W. Sher, D.-H. Hsieh, X.-Y. Chen, H.-M. P. Chen, T.-M. Chen, K.-M. Lau, C.-H. Chen, C.-C. Lin, H.-C. Kuo. Optical cross-talk reduction in a quantum dot-based full-color micro-light-emitting-diode display by a lithographic-fabricated photoresist mold. Photon. Res., 5, 411-416(2017).

    [13] C.-H. Lin, J.-Y. Tsai, C.-C. Kao, H.-C. Kuo, C.-C. Yu, J.-R. Lo, K.-M. Leung. Enhanced light output in InGaN-based light-emitting diodes with omnidirectional one-dimensional photonic crystals. Jpn. J. Appl. Phys., 45, 1591-1593(2006).

    [14] S. Zhou, X. Liu, Y. Gao, Y. Liu, M. Liu, Z. Liu, C. Gui, S. Liu. Numerical and experimental investigation of GaN-based flip-chip light-emitting diodes with highly reflective Ag/TiW and ITO/DBR ohmic contacts. Opt. Express, 25, 26615-26627(2017).

    [15] X. Ding, C. Gui, H. Hu, M. Liu, X. Liu, J. Lv, S. Zhou. Reflectance bandwidth and efficiency improvement of light-emitting diodes with double-distributed Bragg reflector. Appl. Opt., 56, 4375-4380(2017).

    [16] S. Zhou, C. Zheng, J. Lv, Y. Gao, R. Wang, S. Liu. GaN-based flip-chip LEDs with highly reflective ITO/DBR p-type and via hole-based n-type contacts for enhanced current spreading and light extraction. Opt. Laser Technol., 92, 95-100(2017).

    [17] G. J. Lee, I. Y. Hong, T. K. Kim, H. J. Park, S. K. Oh, Y.-J. Cha, M. J. Park, K. J. Choi, J. S. Kwak. Design of ITO/SiO2/TiO2 distributed Bragg reflectors as a p-type electrode in GaN-based flip-chip light emitting diodes. Appl. Surf. Sci., 477, 220-225(2019).

    [18] K. H. Lee, Y.-T. Moon, J.-O. Song, J. S. Kwak. Light interaction in sapphire/MgF2/Al triple-layer omnidirectional reflectors in AlGaN-based near ultraviolet light-emitting diodes. Sci. Rep., 5, 9717(2015).

    [19] I. Y. Hong, A. B. M. H. Islam, T. K. Kim, Y.-J. Cha, J. S. Kwak. Impact of grain growth of silver reflective electrode by electron bombardment on external quantum efficiency of III-nitride micro-light emitting diode arrays. Appl. Surf. Sci., 512, 145698(2020).

    [20] L.-B. Chang, C.-C. Shiue, M.-J. Jeng. High reflective p-GaN/Ni/Ag/Ti/Au ohmic contacts for flip-chip light-emitting diode (FCLED) applications. Appl. Surf. Sci., 255, 6155-6158(2009).

    [21] D.-H. Kim, W. C. Lim, J.-S. Park. Highly thermally stable Pd/Zn/Agohmic contact to Ga-face p-type GaN. J. Alloys Compd., 588, 327-331(2014).

    [22] H. W. Jang, J.-L. Lee. Mechanism for ohmic contact formation of Ni/Ag contacts on p-type GaN. Appl. Phys. Lett., 85, 5920-5922(2004).

    [23] J. H. Son, Y. H. Song, H. K. Yu, J.-L. Lee. Effects of Ni cladding layers on suppression of Ag agglomeration in Ag-based ohmic contacts on p-GaN. Appl. Phys. Lett., 95, 062108(2009).

    [24] J. Lv, C. Zheng, Q. Chen, S. Zhou, S. Liu. High power InGaN/GaN flip-chip LEDs with via-hole-based two-level metallization electrodes. Phys. Status Solidi A, 213, 3150-3156(2016).

    [25] M. Himmerlich, M. Koufaki, G. Ecke, C. Mauder, V. Cimalla, J. A. Schaefer, A. Kondilis, N. T. Pelekanos, M. Modreanu, S. Krischok, E. Aperathitis. Effect of annealing on the properties of indium–tin–oxynitride films as ohmic contacts for GaN-based optoelectronic devices. ACS Appl. Mater. Interfaces, 1, 1451-1456(2009).

    [26] Y. J. Yoon, S. W. Chae, B. K. Kim, M. J. Park, J. S. Kwak. Interfacial reactions of nano-structured Cu-doped indium oxide/indium tin oxide ohmic contacts to p-GaN. J. Nanosci. Nanotechnol., 10, 3254-3259(2010).

    [27] Y. H. Song, J. H. Son, H. K. Yu, J. H. Lee, G. H. Jung, J. Y. Lee, J.-L. Lee. Domain matching epitaxy of Mg-containing Ag contact on p-type GaN. Cryst. Growth Des., 11, 2559-2563(2011).

    [28] X.-L. Hu, L. Liu, H. Wang, X.-C. Zhang. Effects of pre-annealed ITO film on the electrical characteristics of high-reflectance Ni/Ag/Ni/Au contacts to p-type GaN. Appl. Surf. Sci., 357, 1703-1707(2015).

    [29] J.-O. Song, D.-S. Leem, J. S. Kwak, O. H. Nam, Y. Park, T.-Y. Seong. Low-resistance and highly-reflective Zn-Ni solid solution/Ag ohmic contacts for flip-chip light-emitting diodes. Appl. Phys. Lett., 83, 4990-4992(2003).

    [30] D. L. Hibbard, S. P. Jung, C. Wang, D. Ullery, Y. S. Zhao, H. P. Lee, W. So, H. Liu. Low resistance high reflectance contacts to p-GaN using oxidized Ni/Au and Al or Ag. Appl. Phys. Lett., 83, 311-313(2003).

    [31] R.-M. Lin, Y.-L. Chou, W.-C. Tseng, C.-L. Tsai, J.-C. Li, M.-C. Wu. Thermal stability for reflectance and specific contact resistance of Ni/Ag-based contacts on p-type GaN. Electrochem. Solid-State Lett., 12, H315-H318(2009).

    [32] V. Adivarahan, A. Lunev, M. A. Khan, J. Yang, G. Simin, M. S. Shur, R. Gaska. Very-low-specific-resistance Pd/Ag/Au/Ti/Au alloyed ohmic contact to p GaN for high-current devices. Appl. Phys. Lett., 78, 2781-2783(2001).

    [33] H. C. Kim, N. D. Theodore, T. L. Alford. Comparison of texture evolution in Ag and Ag(Al) alloy thin films on amorphous SiO2. J. Appl. Phys., 95, 5180-5188(2004).

    [34] A. E. Chernyakov, K. A. Bulashevich, S. Y. Karpov, A. L. Zakgeim. Experimental and theoretical study of electrical, thermal, and optical characteristics of InGaN/GaN high-power flip-chip LEDs. Phys. Status Solidi A, 210, 466-469(2013).

    [35] D. A. Zakheim, A. S. Pavluchenko, D. A. Bauman, K. A. Bulashevich, O. V. Khokhlev, S. Y. Karpov. Efficiency droop suppression in InGaN-based blue LEDs: experiment and numerical modelling. Phys. Status Solidi A, 209, 456-460(2012).

    [36] W. C. Chong, K. M. Lau. Performance enhancements of flip-chip light-emitting diodes with high-density n-type point-contacts. IEEE Electron Device Lett., 35, 1049-1051(2014).

    [37] M. S. Wong, D. Hwang, A. I. Alhassan, C. Lee, R. Ley, S. Nakamura, S. P. Denbaars. High efficiency of III-nitride micro-light emitting diodes by sidewall passivation using atomic layer deposition. Opt. Express, 26, 21324-21331(2018).

    [38] S. Zhou, S. Yuan, Y. Liu, L. J. Guo, S. Liu, H. Ding. Highly efficient and reliable high power LEDs with patterned sapphire substrate and strip-shaped distributed current blocking layer. Appl. Surf. Sci., 355, 1013-1019(2015).

    [39] D.-S. Leem, J.-O. Song, H.-G. Hong, J. S. Kwak, Y. Park, T.-Y. Seong. Low resistance and highly reflective Sb-Doped SnO2/Ag ohmic contacts to p-type GaN for flip-chip LEDs. Electrochem. Solid-State Lett., 7, G219-G221(2004).

    [40] S. Zhou, H. Xu, B. Tang, Y. Liu, H. Wan, J. Miao. High-power and reliable GaN-based vertical light-emitting diodes on 4-inch silicon substrate. Opt. Express, 27, A1506-A1516(2019).

    [41] S. Zhou, X. Liu, H. Yan, Z. Chen, Y. Liu, S. Liu. Highly efficient GaN-based high-power flip-chip light-emitting diodes. Opt. Express, 27, A669-A692(2019).

    [42] S. Auer, W. Wan, X. Huang, A. G. Ramirez, H. Cao. Morphology-induced plasmonic resonances in silver-aluminum alloy thin films. Appl. Phys. Lett., 99, 041116(2011).

    [43] J. S. Kwak, O. H. Nam, Y. Park. Temperature-dependent contact resistivity of the nonalloyed ohmic contacts to p-GaN. J. Appl. Phys., 95, 5917-5919(2004).

    [44] J. P. Sullivan, R. T. Tung, M. R. Pinto, W. R. Graham. Electron transport of inhomogeneous Schottky barriers: a numerical study. J. Appl. Phys., 70, 7403-7424(1991).

    [45] A. Olbrich, J. Vancea, F. Kreupl, H. Hoffmann. Potential pinch-off effect in inhomogeneous Au/Co/GaAs67P33(100)-Schottky contacts. Appl. Phys. Lett., 70, 2559-2561(1997).

    [46] A. Olbrich, J. Vancea, F. Kreupl, H. Hoffmann. The origin of the integral barrier height in inhomogeneous Au/Co/GaAs67P33-Schottky contacts: a ballistic electron emission microscopy study. J. Appl. Phys., 83, 358-365(1998).

    [47] J. I. Sohn, J.-O. Song, D.-S. Leem, S. Lee, T.-Y. Seong. Nano-dot addition effect on the electrical properties of Ni contacts to p-type GaN. Phys. Status Solidi C, 1, 2524-2527(2004).

    [48] J.-O. Song, J. S. Kwak, Y. Park, T.-Y. Seong. Improvement of the light output of InGaN-based light-emitting diodes using Cu-doped indium oxide/indium tin oxide p-type electrodes. Appl. Phys. Lett., 86, 213505(2005).

    [49] J.-O. Song, J. S. Kwak, T.-Y. Seong. Improvement of the ohmic characteristics of Pd contacts to p-type GaN using an Ag interlayer. Semicond. Sci. Technol., 21, L7-L10(2005).

    [50] R. T. Tung. Electron transport at metal-semiconductor interfaces: general theory. Phys. Rev. B, 45, 13509-13523(1992).

    [51] A. B. M. H. Islam, J.-I. Shim, D.-S. Shin. Optoelectronic performance variations in InGaN/GaN multiple-quantum-well light-emitting diodes: effects of potential fluctuation. Materials, 11, 743(2018).

    Jae Hyeok Lee, Abu Bashar Mohammad Hamidul Islam, Tae Kyoung Kim, Yu-Jung Cha, Joon Seop Kwak. Impact of tin-oxide nanoparticles on improving the carrier transport in the Ag/p-GaN interface of InGaN/GaN micro-light-emitting diodes by originating inhomogeneous Schottky barrier height[J]. Photonics Research, 2020, 8(6): 1049
    Download Citation