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The effect of tin-oxide (SnO) nanoparticles, which are obtained by indium-tin-oxide (ITO) treatment, on the
p-GaN surface of GaN-based flip-chip blue micro-light-emitting diode (μ-LED) arrays is investigated. A thin
Ag layer is deposited on the ITO-treated p-GaN surface by sputtering. SnO nanoparticles originate from inho-
mogeneous Schottky barrier heights (SBHs) at Ag/p-GaN contact. Therefore, effective SBH is reduced, which
causes carrier transport into the μ-LED to enhance. 10 nm thick ITO-treated μ-LEDs show better optoelectronic
characteristics among fabricated μ-LEDs owing to improved ohmic contact and highly reflective p-type reflectors.
Basically, SnO nanoparticles help to make good ohmic contact, which results in improved carrier transport into
μ-LEDs and thus results in increased optoelectronic performances. © 2020 Chinese Laser Press

https://doi.org/10.1364/PRJ.385249

1. INTRODUCTION

Recently, GaN-based high-power light-emitting diodes (LEDs)
have attracted great consideration due to their potential appli-
cations in displays, headlamps, solid-state lighting, and indoor
and outdoor lamps [1–4]. At driving current, the light-output
power (LOP) and the external quantum efficiency (EQE) must
be high for these applications [5]. However, the increase in
junction temperature in top-emitting LEDs is one of the major
issues to reduce the EQE and LOP at driving current [6,7] be-
cause the conventional top-emitting LEDs have been using an
insulating sapphire substrate, which has poor thermal conduc-
tivity. Hence, the excessive generated heat is an unavoidable
inherent characteristic of top-emitting LEDs, that causes the
junction temperature in these LEDs to increase. As a result,
the efficiency is reduced, which hinders the further develop-
ment of high-power LEDs [8]. Thus, bottom-emitting LEDs,
namely, vertical and flip-chip LEDs, have attracted considerable
attention for having the ability to enhance both light extraction
efficiency (LEE) and LOP as well as having better heat dissi-
pation [9–11] due to being commonly bonded with a high-
thermal-conductivity submount (such as copper, silicon, or
ceramic) that provides a thermal path for the generated heat.
Flip-chip LEDs have relatively higher LEE among top- and

bottom-emitting LEDs because of low refractive index differ-
ence between sapphire (n � 1.78) and air (n � 1).

In this regard, the p-type contact of flip-chip LEDs must be
ohmic with lower contact resistance and higher reflectance in
order to achieve high LOP. Three different types of reflectors,
the distributed Bragg reflector (DBR) [12–17], the omnidirec-
tional reflector [18], and the metal-based reflector [19], have
been used in LEDs. Recently, dielectric DBRs have been widely
used in GaN-based LEDs [12–17]. Silver (Ag) is one of the
candidates for a highly reflective reflector in flip-chip LEDs,
since it has higher reflectance (>95%) at visible spectra
[20–22]. The work function of Ag is about 4.35 eV, which is
not quite favorable to make good ohmic contact with p-GaN
[22]. In order to overcome this problem, a high-work-function-
based Ni thin layer (<10 Å) between the p-GaN and Ag has
been reported [22–24] for improving the p-type ohmic contact.
The annealing treatment of metal is crucial for making good
ohmic contact. However, thermal annealing of Ag at high
temperature creates agglomeration, which deteriorates both
electrical resistivity and optical reflectivity. Thus, both the ag-
glomeration (due to annealing) and the decreased reflectance
(owing to insertion of an additional metal layer) are inevitable
parts for making good ohmic contact between Ag and p-GaN
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surfaces, which thus results in hampering the further develop-
ment of high-LOP-based flip-chip LEDs. Therefore, several
kinds of attempts have been proposed for preventing Ag from
agglomeration/oxidation in order to obtain Ag-based good
ohmic contact and high reflectance with p-GaN: a transparent
conductive oxide (TCO) layer [25,26], Ag–metal intermetallic
[27], pre-annealed indium tin oxide (ITO) [28], and various
kinds of metal compositions such as Ni/Ag [22], Zn-Ni/Ag
[29], Ni/Au/Ag [30], Ni/Ag/Ti/Au [31], and Pd/Ag/Au/Ti/
Au [32]. Despite the abovementioned intensive efforts, Ag
agglomeration has still been found due to surface diffusion of
Ag atoms caused by the surface energy, which results in grain
boundaries having grooves and hillocks formations and then
creates agglomeration [33]. Nevertheless, the formation of
ohmic contact to a p-GaN layer by using Ag is still not properly
understood. Therefore, it is further necessary to investigate
Ag/p-GaN-based ohmic contact for enhancing the LOP of
bottom-emitting LEDs.

Although flip-chip LEDs have better LOP and heat dissipa-
tion capability compared to top-emitting LEDs, the efficiency
droop at high current due to nonuniform current spreading
caused by the larger chip size is still one of the essential issues
[34,35]. Thus, the current crowding effect at high injection
current can be eliminated by optimizing the electrode pattern
[36], decreasing the chip size [37], and using the SiO2 current
blocking layer [38]; this results in improved optoelectronic
characteristics. Recently, micro-LEDs (μ-LEDs) have emerged
as the next-generation LEDs due to their high power at low
driving current and the widespread application of μ-LED arrays
as a light source, especially in adaptive driving beams (ADB)/
advanced forward lighting systems (AFS) [4].

In this work, we explain the mechanism of improved ohmic
contact at the Ag/p-GaN interface by tin oxide (SnO) nano-
particles. First, ITO is deposited on the p-GaN layer, annealed,
and finally removed, which is called the ITO treatment. Ag is
then deposited on the ITO-treated p-GaN surface using
sputtering. Both contact resistance and reflectance are de-
creased with the increase in ITO thickness. The ITO treatment
creates SnO nanoparticles, which are interactively found by us-
ing scanning electron microscopy (SEM), transmission electron

microscopy (TEM), atomic force microscopy (AFM), X-ray
photoelectron spectroscopy (XPS), auger electron spectroscopy
(AES), and energy dispersive spectroscopy (EDS) characteris-
tics. Basically, the SnO nanoparticles create an inhomogeneous
Schottky barrier height (SBH) at the Ag/p-GaN interface,
which causes the effective SBH to decrease. Therefore, the
ohmic contact of the Ag/p-GaN interface is improved. This
effect is consistently explained by a proposed schematic dia-
gram. Temperature-dependent current–voltage (I–V) charac-
teristics are used to calculate the effective SBH. Based on
various kinds of ITO-treated thicknesses, 1024 pixel flip-chip
μ-LED arrays are fabricated in order to investigate the effect of
fabricated SnO nanoparticles at the Ag/p-GaN ohmic contact,
which results in improvement of the optoelectronic character-
istics of μ-LEDs.

2. SAMPLE STRUCTURE AND EXPERIMENTS

The similar epitaxial structure blue LED wafers are grown on a
c-plane patterned sapphire substrate (PSS) by metal-organic
chemical vapor deposition (MOCVD). The epitaxial structure
consists of a 30 nm thick GaN buffer layer, a 4 μm thick
Si-doped n-type GaN layer (8 × 1018 cm−3), and a 100 nm
thick InGaN/GaN superlattice layer, which were consecutively
grown on the substrate. The active multiple-quantum-well
(MQW) layer was composed of five pairs of 2.3 nm thick
In0.18Ga0.82N wells separated by the 5 nm thick GaN barriers.
A 40 nm thick Mg-doped p-Al0.2Ga0.8N electron-blocking
layer, and finally a 200 nm thick Mg-doped p-GaN layer
(5 × 1017 cm−3) were successfully grown on the active layer
to finish the device structure. The mesa structure was formed
by patterning with photolithography, and then it was etched
through inductively coupled plasma-reactive ion etching (ICP-
RIE) in order to expose the n-GaN layer as shown in Fig. 1(a).
Mesa etching was done by ICP-RIE for 7 min until it reached
a depth of about 1 μm to expose the n-GaN layer. During this
etching process, dry etching parameters such as ICP power, bias
power, working pressure, BCl3 flow, and N2 flow were 900 W,
100 W, 5 × 10−3 Torr, 35 sccm, and 5 sccm, respectively. After
removing the photoresist [with acetone, isopropyl alcohol, and

Fig. 1. (a) Schematic diagram of ITO treatment for making L-TLM on a p-GaN surface. (b) Optical microscope image of μ-LED arrays.
(c) Schematic fabrication steps of μ-LED arrays.
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deionized (DI) water], the p-GaN surface was cleaned by
H2SO4:H2O2, HCl:DI, and buffered oxide etchant (BOE)
for removing unwanted particles, remaining Ga atoms, and
native oxides, respectively, from the p-GaN surface. The line-
transmission length method (L-TLM) patterns were made on
the p-GaN surface through photolithography for measuring the
I–V characteristics to calculate the contact resistance as shown
in Fig. 1(a). Various samples with different kinds of 10, 15, 20,
30, and 60 nm thick ITO (In2O3: 90%, SnO2: 10%) layers
were deposited on the patterned p-GaN surface by an electron-
beam evaporator. These samples were then annealed at 600°C
in N2∕O2 ambient for 1 min by using rapid thermal annealing
(RTA). Again, H2SO4:H2O2, HCl:DI, ITO etchant [FeCl3
(25%–35%):HCl (3%–4%):H2O (>60%)], and BOE were
used to clean and remove the deposited ITO layer (which is
defined as ITO treatment) from the p-GaN surface of a sample.
As a result, this process creates SnO nanoparticles on the
p-GaN surface. In this research work, the SnO nanoparticles
on the p-GaN surface are fabricated by using chemical etching
instead of pulsed laser ablation method [39] because chemically
etched SnO/Ag p-type reflective electrodes have higher reflec-
tivity and good adaptability to the fabrication process compared
to the laser ablation method. RF magnetron sputtering was
then used to deposit a 250 nm thick Ag film on the p-GaN
surface. In this research work, the highly reflective contact elec-
trode is made by depositing Ag film on the ITO-treated p-GaN
surface instead of an Ag film covered by TiW/Pt multiple layers
[40,41]. During the deposition of Ag on the ITO-treated
surface, the following parameters of Ag sputtering were kept
constant: Ag target 2-in. (5.08 cm), RF power 100W, chamber
pressure 5 × 10−3 Torr, and Ar flow 20 sccm. After separately
investigating the effect of the size of the SnO nanoparticles on
the Ag/p-GaN contact electrode, we fabricated different kinds
of μ-LEDs arrays based on various kinds of contacts without
ITO treatment and with 10, 30, and 60 nm thick ITO-treated
Ag/p-GaN. A Ni/Al/Ni (100/500/100 nm) layer was deposited
on the p-type electrode as a capping layer. The n-type electrode
was formed by the Cr/Al/Ni (30/500/100 nm) layer on the
exposed n-GaN surface, and finally a Ni/Au/Ni/Au (100/600/
100/800 nm) layer was deposited on n-type electrode as a cap-
ping layer, which also served as a bonding pad. The size of the
bonding pad of μ-LEDs is about 60 μm. The 1024 pixel
μ-LED arrays with a pixel area of 115 μm × 115 μm were fab-
ricated as seen in Fig. 1(b), and the fabrication steps for the
μ-LEDs are shown in Fig. 1(c).

The (I–V) characteristics of the samples were measured by
a Keithley 4145B source meter with a voltage sweep rate of
0.35 V · s−1. A UV/Vis spectroscope (PerkinElmer Lambda 35)
was used for measuring the reflectance of samples. A high-
resolution charge-coupled-device (CCD) camera was used for
recording the two-dimensional electroluminescent (EL) image.
A Si p-i-n photodiode was used for measuring the EL intensity.
A fiber-optic spectrometer (AvaSpec-2048) was used to record
the peak emission wavelength of the μ-LEDs. An ultrahigh-
resolution Schottky field emission SEM (JEOL JSM-7610F
Plus) was used for understanding the surface morphology of the
μ-LEDs. An ultrahigh-resolution TEM (Themis Z, Thermo
Fisher Scientific) was used for detailed investigation of the

ITO-treated p-GaN surface. In addition, an AFM (Park
Systems XE-7) was also used for measuring the surface char-
acteristics of the ITO-treated p-GaN surface at the highest
nanoscale resolution. The depth profile of ITO-treated surface
was measured by an XPS system (Thermo Fisher Scientific,
K-Alpha). Both the elemental and chemical states of the
ITO-treated surface were scanned by high-performance AES
(Physical Electronics, PHI-710).

3. RESULTS AND DISCUSSION

Before investigating all characteristics, the change in p-GaN
surface after ITO treatment is observed by using AFM and then
SEM (which is not shown in this article) characteristics. The
AFM characteristics of thickness varying ITO-treated samples
are shown in Figs. 2(a)–2(e). It is found that the ITO treatment
causes nanosize roughness on the p-GaN surface. Basically, sur-
face roughness consists of nanoparticles. The average roughness
sizes of 10, 15, 20, 30, and 60 nm thick ITO-treated layers
on the p-GaN surface are 0.195, 1.592, 3.069, 4.041, and
5.531 nm, respectively, as shown in Fig. 2(f ). It indicates that
the roughness size on the p-GaN surface is increased with ITO
thickness, which is consistently observed by using both AFM
and SEM characteristics. The size of roughness on the p-GaN
surface is increased because of an increase in nanoparticle
density into the roughness area.

The AES characteristics are taken on the ITO-treated
surface for finding the material composition in the roughness.
The measured position of AES characteristics is shown in
Fig. 3(a), which is taken by using SEM, where point 1 and
point 2 represent the measured locations on the surface rough-
ness consisting of nanoparticles and p-GaN surface, respec-
tively. It is found that there are peak amplitudes of Sn and
oxygen (O) particles in the point 1 position and gallium (Ga)
and nitrogen (N) particles in the point 2 position as shown in
Fig. 3(b). At point 1, the AES depth profiles of In, Sn, and O
are shown in Fig. 3(c) for different thicknesses of ITO. The
depth profile of indium (In) concentration (<5%) on the
p-GaN surface is almost constant for samples without ITO
treatment and ITO-treated samples. On the other hand, the
concentrations of Sn and O atoms on the ITO-treated surface
have an upward tendency with the increase in ITO thickness.
The concentrations of Sn and O are increased about 8.7%
and 17%, respectively, as the ITO thickness increased from
0 nm (without ITO) to 60 nm, where those without any
ITO layer are assumed to have about 0% of Sn, O, and In
particles. These results consistently suggest that the ITO-
treated p-GaN surface consists of nanoparticles, which are com-
posed of SnO nanoparticles.

We have also measured the EDS characteristic to analyze the
inside particles of a 30 nm thick ITO-treated sample. The mea-
sured EDS cross-section area is shown in Fig. 4(a) with the red
dotted box. The EDS analyses of In, Sn, and O atoms into the
selected nanoparticles are shown in Figs. 4(b)–4(d), respec-
tively. The In atoms clearly appear inside of the p-GaN layer;
however, there is very small amount of In atoms observed on
the p-GaN surface. These results also resemble those of the
AES characteristics. On the other hand, Sn and O atoms
are found in each nanoparticle on the p-GaN surface as seen
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in Figs. 4(c) and 4(d), respectively. Thus, nanoparticles consist
of SnO compounds, which is also consistent with the AES char-
acteristics. In order to confirm the composition of the nano-
particles, XPS characteristics were taken before and after ITO
treatment. In the XPS characteristics, the peaks of Sn3d and
O1s are shifted to a higher energy after ITO treatment as shown
in Figs. 4(e) and 4(f ), respectively. It represents that the Sn
atoms have strong bonding with the O atoms, which thus
results in forming the SnO nanoparticles. By the analyses of
AFM, TEM, AES, EDS, and XPS characteristics, it is consis-
tently found that the ITO treatment creates SnO nanoparticles
on the p-GaN surface.

Now, a thin Ag layer is deposited on samples both without
and with ITO treatment to investigate the effect of fabricated
SnO nanoparticles in between Ag/p-GaN contact. The mea-
sured I–V characteristics of samples without ITO treatment
and those with various kinds of ITO-treated samples are shown
in Fig. 5(a). The sample without ITO treatment suffers from

nonlinear I–V characteristics due to the low work function of
Ag [22]. However, the I–V characteristics of the ITO-treated
samples follow the linear behavior and show a step trend with
the increase in ITO thickness. The inset shows the total resis-
tance, which is decreased with the increase in ITO-treated
thickness compared to the sample without ITO. Basically,
SnO nanoparticles originating from the ITO treatment reduce
the effective SBH, which causes the ohmic contact to improve.
The measured reflectances of samples without ITO treatment
and the 10, 15, 20, 30, and 60 nm thick ITO-treated samples
are 100%, 99.7%, 95.6%, 91.5%, 85.0%, and 76.1%, respec-
tively, as shown in Fig. 5(b). The reflectance of a sample is
decreased with the increase in ITO thickness (i.e., SnO nano-
particle size). The calculated contact resistance by using
L-TLM of samples without ITO treatment and those with
10, 15, 20, 30, and 60 nm thick ITO-treated layers are
4.12 × 100, 2.25 × 10−2, 1.14 × 10−2, 6.68 × 10−3, 3.46 × 10−3,
and 5.87 × 10−3 Ω · cm2, seen in Fig. 5(c); these are comparable

Fig. 2. AFM characteristics of p-GaN surface after ITO treatment for ITO thickness of (a) 10, (b) 15, (c) 20, (d) 30, and (e) 60 nm. (f ) Surface
roughness size, which depends on the ITO thickness.

Fig. 3. (a) SEM characteristic after ITO treatment. (b) AES depth profiles according to point 1 and point 2 locations as mentioned in the SEM
characteristic. (c) Concentrations of In, Sn, and O as a function of ITO thickness.
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to the recently reported specific contact resistance of the Ag or
ITO contact with the p-GaN layer [40,41]. The contact resis-
tance is decreased with the increase in SnO nanoparticle size on
the p-GaN surface [as seen Fig. 2(f )] since the effective SBH
at the metal–semiconductor (MS) surface decreases with the
ITO-treated thickness. Usually, there is a reflection dip around
300 nm because of the bulk plasma frequency of Ag, which is
caused by the d-like valence electron absorption [42]. The re-
flection dip at about 450 nm is attributed to the excitation
of surface plasmon resonance in the grain boundaries [42].

The reflection dip becomes broader and higher with the
ITO thickness due to the absorption of light. At 450 nm,
the reflectance is decreased with the ITO thickness as found
in Fig. 5(c). From these results, it is considered that both con-
tact resistance and reflectance tend to decrease with the ITO-
treated thickness, which eventually depends on the size of the
fabricated SnO nanoparticles on the p-GaN surface. In addi-
tion, it should be noted that the reflectances of samples without
any ITO layer (0 nm) and those with a 10 nm thick ITO-
treated layer are almost similar; however, the contact resistance

Fig. 4. (a) Cross-sectional view of TEM characteristics after ITO treatment of a 30 nm thick ITO layer on a p-GaN surface. EDS profile of (b) In,
(c) Sn, and (d) O atoms on a p-GaN surface mentioned in the red dotted box in (a). XPS characteristics of (e) Sn and (f ) O particles before and after
ITO treatment.
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of a 10 nm thick ITO-treated sample is significantly lower com-
pared to the sample without ITO because the SnO nanopar-
ticles caused the effective SBH to decrease.

Based on temperature, the calculated contact resistances of
10 and 30 nm thick ITO-treated layers by L-TLM measure-
ment are shown in Fig. 6(a); the temperature-dependent I–V
characteristics of 10 and 30 nm thick ITO-treated samples are
shown in Figs. 6(b) and 6(c), respectively, where the slope of
I–V characteristics increases as the temperature increases from
200 to 400 K. The inset shows the calculated sheet resistance.
The 30 nm thick ITO-treated sample has lower contact and
sheet resistances than the 10 nm thick ITO-treated sample.
The decrease in resistance with the increased size of SnO-
nanoparticles is because of a decrease in effective SBH. The
effective barrier height is estimated by the relationship between
the contact resistance and the defect density through the fol-
lowing Eq. (1) [43]:

ρc �
kBT

�q2kΘD∕h� exp�−γ∕aN 1∕3
DE ��3∕4πNDE �1∕3NDE

× exp
�
qφ
kT

�
, (1)

where ΘD, γ, a, NDE , and qφ are the Debye temperature,
constant, extent of the wave function, defect density, and
SBH, respectively [43]. The qφ is calculated from the linear
relation between ρcT −1 and 1000∕T as seen in Fig. 6(d) for
10 and 30 nm thick ITO-treated layers, which are 0.195
and 0.046 eV, respectively. The difference in calculated SBH
between the 10 and the 30 nm thick ITO-treated layers is
due to the increased SnO nanoparticles size as already seen in
Fig. 2(f ). Thus, the intentionally fabricated SnO nanoparticles

in between MS contact by using ITO treatment cause the SBH
to decrease. Basically, the SnO nanoparticles break the homo-
geneous SBH at the MS surface. This creates variation of the
SBH corresponding to the SnO nanoparticles as explained in
Fig. 7. An inhomogeneous SBH at MS contact is formed by a
pinch-off effect known as the potential saddle point in the
semiconductor [44–49]. As a result, there are many pinch-off-
like lower SBHs (blue solid line) surrounded by a higher SBH
corresponding to the SnO nanoparticle (red solid line) [44–49].
The difference in SBHs between SnO nanoparticles and MS
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contact leads to an increase in the electric field at the MS inter-
face [44,45]. Consequently, the barrier height becomes lower
due to an increase in electric field [49]. The fabrication of SnO
nanoparticles in between the Ag/p-GaN interface reduces the
effective SBH (blue solid line), which causes the ohmic contact
to improve. Hence, the current density near the lower SBH is
higher due to decrease in SBH, which is caused by the SnO
nanoparticles, compared to the average current density [50] as
seen in Fig. 7, which is consistent with Fig. 5(a). As the rough-
ness size is increased owing to an increase in the size of the
fabricated SnO nanoparticles (or ITO thickness), the effective
SBH also decreases, which causes the ohmic contact at the MS
interface to decrease as seen in Fig. 5. As a result, the carrier
transport at the MS surface is enhanced due to fabricated SnO
nanoparticles.

The p-type contact of flip-chip μ-LED arrays is fabricated
according to the investigated method described above to com-
prehend the effect of Ag/p-GaN contact without and with ITO
treatment on the optoelectronic performances. The I–V char-
acteristics of the fabricated μ-LED arrays based on layers
without ITO treatment and with 10, 30, and 60 nm thick
ITO-treated layers are shown in Fig. 8(a). At 83 A∕cm2,
the measured forward voltages of μ-LEDs from 1 to 16 pixels
are shown in the inset. The calculated average forward voltages
of μ-LEDs without ITO (0 nm) and with 10, 30, and 60 nm
thick ITO-treated μ-LEDs are 4.31, 3.29, 3.17, and 3.20 V,
respectively. It is found that the μ-LEDs without ITO treat-
ment suffer from higher forward voltage because of poor ohmic
contact than the fabricated SnO-nanoparticle-based μ-LEDs.
Thus, SnO-nanoparticle-based contact electrodes improve the
carrier transport in μ-LEDs, which causes the forward voltage

to decrease. Figure 8(b) shows the LOPs without and with
various kinds of thick ITO-treated μ-LEDs. The inset shows
the measured LOPs from 1 to 16 pixels at 83 A∕cm2. The
calculated average LOPs are 1.44, 3.27, 2.89, and 2.74 mW
for μ-LEDs without and with 10, 30, and 60 nm thick
ITO treatment, respectively. The fabricated SnO-nanoparticle-
based μ-LEDs have higher LOP than those without ITO treat-
ment. In addition, the 10 nm thick ITO-treated μ-LEDs have
the highest LOP among the fabricated μ-LEDs. To understand
the increase in LOP of 10 nm thick ITO-treated μ-LEDs com-
pared to others, a relationship among fabricated SnO nanopar-
ticles size (the density of Sn), reflectance, and contact resistance
is shown in Fig. 8(c). As the ITO treatment thickness is in-
creased, the contact resistance is also decreased owing to the
reduced effective SBH, which is caused by the fabricated
SnO nanoparticles in between Ag/p-GaN MS contact as al-
ready discussed above. However, the increase in contact resis-
tance of a 60 nm thick ITO-treated layer compared to a 30 nm
thick ITO-treated layer may be because of the size-dependent
saturation effect of SnO nanoparticles fabricated from the
thicker ITO-treated layer. The decrease in reflectance is also
caused by the increased size of the fabricated SnO nanoparticles
with the ITO thickness seen in Fig. 5. On the other hand, a
highly reflective p-type reflector is required to improve both the
LEE and LOP of flip-chip μ-LEDs. The fabricated μ-LEDs
both without (0 nm) and with a 10 nm thick ITO-treated layer
have similar kind of reflectance (about 100%). However, the
increase in LOP of a 10 nm thick ITO-treated μ-LED among
fabricated μ-LEDs is owing to highly reflective p-type reflector.
The μ-LED without ITO treatment has lower LOP despite
having a highly reflective p-type reflector because it has poor
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Fig. 8. (a) I–V characteristics of the μ-LEDs with various kinds of ITO-treated thicknesses. Inset shows the forward voltages from 1 to 16 pixels
at 83 A∕cm2. (b) LOPs of μ-LEDs at various kinds of ITO-treated thicknesses. Inset shows the LOPs from 1 to 16 pixels at 83 A∕cm2. (c) The
relationship among contact resistance, reflectance, and Sn concentration of μ-LEDs without and with ITO treatment. (d) Aging effect of 10 nm
thick ITO-treated μ-LED at an aging temperature of 85°C, where the LOPs are measured at 83 A∕cm2.
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contact resistance, which causes bad carrier transport through
the p-type electrode as seen in Figs. 5 and 8. The aging effect of
a 10 nm thick ITO-treated Ag/p-GaN-based μ-LED is shown
in Fig. 8(d) at a constant aging temperature of about 85°C. It is
observed that there is a very small change in forward voltage
with the increase in aging time. However, there is no change
in LOP during the entire aging time. Therefore, it can be said
that there is no issue about the reliability of Ag thin film on the
ITO-treated p-GaN surface in GaN-based μ-LED operation.

Figure 9(a) shows the EL intensity distribution at 83 A∕cm2

for μ-LEDs without and with 10, 30, and 60 nm thick ITO
treatment. It is also found that the SnO-nanoparticle-based
μ-LEDs have uniform light intensity distribution over the chip
area compared to the μ-LED without ITO treatment, since the
μ-LED without ITO treatment has poor contact resistance
and carrier transportation. In addition, the 10 nm thick
ITO-treated μ-LED has higher light intensity among fabricated
μ-LEDs, which results from the highly reflective p-type elec-
trode as seen in Figs. 5(c) and 8(b). The EL peak wavelengths
of μ-LEDs without and with ITO treatment are shown in
Fig. 9(b). It is also a similar reason for which the 10 nm thick
ITO-treated μ-LED has the higher intensity due to the im-
proved contact resistance and highly reflective p-type reflector.
The ITO-treated μ-LEDs suffer from blue-shift in the peak
emission wavelength compared to the μ-LED without ITO
treatment. Usually, surface treatment has no effect on the
peak emission wavelength, since μ-LEDs are fabricated from
similar wafers. The emission wavelength depends on the active
MQWs. Therefore, the difference in peak emission wavelength
between μ-LEDs without and with ITO treatment may be
either due to nonuniform In-composition in the MQWs over
the wafer area or fluctuation of potential energy as reported
for the blue LEDs fabricated from similar wafers [51].

4. CONCLUSIONS

In summary, we have significantly and interactively investigated
the ohmic contact in the Ag/p-GaN MS interface by using no
ITO and various kinds of ITO-treated thicknesses. The p-type
contact electrode of flip-chip μ-LED arrays is fabricated with-
out and with SnO nanoparticles to investigate the difference
in optoelectronic performances between them. ITO treatment
creates SnO nanoparticles on the p-GaN surface, the size of
which is increased with the increase in ITO thickness. After
ITO treatment, the formation of SnO nanoparticles on p-GaN
surface is consistently found by AFM, SEM, TEM, EDS, AES,
and XPS characteristics. The difference in SBHs between SnO
nanoparticles caused by ITO treatment and MS contact gen-
erates inhomogeneous SBH at the MS surface, which causes the
effective SBH at the Ag/p-GaN contact to decrease. Both the
contact resistance and reflectance of p-type electrode are de-
creased with the increased size of fabricated SnO nanoparticles
in between the Ag/p-GaN interface. The 10 nm thick ITO-
treated μ-LEDs have the highest LOP among the ITO-treated
μ-LEDs since their p-type reflective electrodes have higher
reflectance (about 99.7%). At 83 A∕cm2, SnO-nanoparticle-
based μ-LEDs not only have uniform light intensity distribu-
tion over the chip area but also higher peak wavelength
intensity than the μ-LED without ITO treatment. In addition,
the fabricated SnO-nanoparticle-based μ-LEDs have lower for-
ward voltage compared to the sample without ITO treatment.
Basically, SnO nanoparticles reduce the effective SBH at the
MS interface, which causes the contact resistance to decrease
and thus results in significantly improved carrier transport
into the μ-LED. Therefore, we anticipate that the intentionally
fabricated SnO nanoparticles from the ITO treatment will
be a promising fabrication technique to make good Ag/
p-GaN-based ohmic contact in order to improve the perfor-
mance of next-generation flip-chip μ-LEDs.
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