• Laser & Optoelectronics Progress
  • Vol. 59, Issue 9, 0922003 (2022)
Longbin Jiang1, Runze Ding1, Chenyang Ding1、*, Xiaofeng Yang2、**, and Yunlang Xu2
Author Affiliations
  • 1Shanghai Engineering Research Center of Ultra-Precision Motion Control and Measurement, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
  • 2State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China
  • show less
    DOI: 10.3788/LOP202259.0922003 Cite this Article Set citation alerts
    Longbin Jiang, Runze Ding, Chenyang Ding, Xiaofeng Yang, Yunlang Xu. Research Progress on Stage Control Methods for a Lithography Machine[J]. Laser & Optoelectronics Progress, 2022, 59(9): 0922003 Copy Citation Text show less
    References

    [1] Owa S, Nagasaka H. Immersion lithography: its potential performance and issues[J]. Proceedings of SPIE, 5040, 724-733(2003).

    [2] Wu B, Kumar A. Extreme ultraviolet lithography and three dimensional integrated circuit:a review[J]. Applied Physics Reviews, 1, 011104(2014).

    [3] Ito T, Okazaki S. Pushing the limits of lithography[J]. Nature, 406, 1027-1031(2000).

    [4] Schmidt R M, Schitter G, Rankers A et al[M]. The design of high performance mechatronics: high-tech functionality by multidisciplinary system integration(2014).

    [5] Erdmann A, Fühner T, Evanschitzky P et al. Optical and EUV projection lithography: a computational view[J]. Microelectronic Engineering, 132, 21-34(2015).

    [6] Peeters R, Lok S, Mallman J et al. EUV lithography: NXE platform performance overview[J]. Proceedings of SPIE, 9048, 90481J(2014).

    [7] Markle D. New projection printer[J]. Solid State Technology, 17, 50-53(1974).

    [8] Bruning J H. Optical lithography: 40 years and holding[J]. Proceedings of SPIE, 6520, 652004(2007).

    [9] Wang X Z, Dai F Z[M]. Integrated Circuit and Lithographic Tool(2020).

    [10] Butler H. Position control in lithographic equipment: an enabler for current-day chip manufacturing[J]. IEEE Control Systems Magazine, 31, 28-47(2011).

    [11] Liu D, Cheng Z G, Gao H J et al. Progress of wafer stage and reticle stage for step-and-scan-lithography system[J]. Laser & Optronics Progress, 40, 14-20(2003).

    [12] Schmidt R H M. Ultra-precision engineering in lithographic exposure equipment for the semiconductor industry[J]. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 370, 3950-3972(2012).

    [13] Sun S S, Wang D, Qi Y J et al. Design of reflective projection optics used in lithographic focusing and leveling system[J]. Acta Optica Sinica, 40, 1522002(2020).

    [14] Heertjes M F, Butler H, Dirkx N J et al. Control of wafer scanners: methods and developments[C], 19830881(2020).

    [15] Ma X Z, Zhang F, Huang H J. Correction technology for illumination field intensity profile in photolithography machine[J]. Chinese Journal of Lasers, 48, 2005001(2021).

    [16] Boerlage M, Tousain R, Steinbuch M. Jerk derivative feedforward control for motion systems[C], 4843-4848(2004).

    [17] Chang B H, Hori Y. Trajectory design considering derivative of jerk for head-positioning of disk drive system with mechanical vibration[J]. IEEE/ASME Transactions on Mechatronics, 11, 273-279(2006).

    [18] Arimoto S, Kawamura S, Miyazaki F. Bettering operation of robots by learning[J]. Journal of Robotic Systems, 1, 123-140(1984).

    [19] Fu X W, Yang X F, Zanchetta P et al. Frequency-domain data-driven adaptive iterative learning control approach: with application to wafer stage[J]. IEEE Transactions on Industrial Electronics, 68, 9309-9318(2021).

    [20] Liu W K, Ding R Z, Yang X F et al. A parallel inverse-model-based iterative learning control method for a master-slave wafer scanner[C], 41-46(2020).

    [21] Mishra S, Topcu U, Tomizuka M. Iterative learning control with saturation constraints[C], 943-948(2009).

    [22] Dijkstra B G, Bosgra O H. Noise suppression in buffer-state iterative learning control, applied to a high precision wafer stage[C], 998-1003(2002).

    [23] Song F Z, Liu Y, Xu J X et al. Data-driven iterative feedforward tuning for a wafer stage: a high-order approach based on instrumental variables[J]. IEEE Transactions on Industrial Electronics, 66, 3106-3116(2019).

    [24] Boeren F, Oomen T, Steinbuch M. Iterative motion feedforward tuning: a data-driven approach based on instrumental variable identification[J]. Control Engineering Practice, 37, 11-19(2015).

    [25] Dai L Y, Li X, Zhu Y et al. Feedforward tuning by fitting iterative learning control signal for precision motion systems[J]. IEEE Transactions on Industrial Electronics, 68, 8412-8421(2021).

    [26] Boeren F, Bruijnen D, van Dijk N et al. Joint input shaping and feedforward for point-to-point motion: automated tuning for an industrial nanopositioning system[J]. Mechatronics, 24, 572-581(2014).

    [27] Li L, Liu Y, Li L Y et al. Kalman-filtering-based iterative feedforward tuning in presence of stochastic noise: with application to a wafer stage[J]. IEEE Transactions on Industrial Informatics, 15, 5816-5826(2019).

    [28] Jiang Y, Zhu Y, Yang K M et al. A data-driven iterative decoupling feedforward control strategy with application to an ultraprecision motion stage[J]. IEEE Transactions on Industrial Electronics, 62, 620-627(2015).

    [29] Li M, Zhu Y, Yang K M et al. An integrated model-data-based zero-phase error tracking feedforward control strategy with application to an ultraprecision wafer stage[J]. IEEE Transactions on Industrial Electronics, 64, 4139-4149(2017).

    [30] Boeren F, Bruijnen D, Oomen T. Enhancing feedforward controller tuning via instrumental variables: with application to nanopositioning[J]. International Journal of Control, 90, 746-764(2017).

    [31] Deenen D A, Heertjes M F, Heemels W P M H et al. Hybrid integrator design for enhanced tracking in motion control[C], 2863-2868(2017).

    [32] Shtessel Y, Edwards C, Fridman L et al[M]. Sliding mode control and observation: volume 10(2014).

    [33] Edwards C, Shtessel Y B. Adaptive continuous higher order sliding mode control[J]. Automatica, 65, 183-190(2016).

    [34] Yao B, Tomizuka M. Adaptive robust control of SISO nonlinear systems in a semi-strict feedback form[J]. Automatica, 33, 893-900(1997).

    [35] Ding R, Ding C, Xu Y et al. Neural-network-based adaptive robust precision motion control of linear motors with asymptotic tracking performance[J]. Nonlinear Dynamics, 1-18(2022).

    [36] Verbaan K, van der Meulen S, Steinbuch M. Broadband damping of high-precision motion stages[J]. Mechatronics, 41, 1-16(2017).

    [37] Verbaan C A M, Rosielle P C J N, Steinbuch M. Broadband damping of non-rigid-body resonances of planar positioning stages by tuned mass dampers[J]. Mechatronics, 24, 712-723(2014).

    [38] Verbaan C A M, Peters G W M, Steinbuch M. The advantage of linear viscoelastic material behavior in passive damper design-with application in broad-banded resonance dampers for industrial high-precision motion stages[J]. Journal of Sound and Vibration, 386, 242-250(2017).

    [39] Schneiders M G E, van de Molengraft M J G, Steinbuch M. Introduction to an integrated design for motion systems using over-actuation[C], 3249-3254(2003).

    [40] Schneiders M G E, van de Molengraft M J G, Steinbuch M. Benefits of over-actuation in motion systems[C], 505-510(2004).

    [41] Schneiders M G E, van de Molengraft M J G, Steinbuch M M. Modal framework for closed-loop analysis of over-actuated motion systems[C](2004).

    [42] van der Wielen A M, Delbressine F L M, Schellekens P H J. Overactuation: a solution for the accuracy-throughput speed contradiction in parallel axis positioning systems[J]. Mechanism and Machine Theory, 46, 1732-1743(2011).

    [43] Oomen T, van Herpen R, Quist S et al. Connecting system identification and robust control for next-generation motion control of a wafer stage[J]. IEEE Transactions on Control Systems Technology, 22, 102-118(2014).

    [44] Huang T, Yang K M, Cheng R et al. Closed-loop subspace identification of MIMO motion system with flexible structures for motion control[C](2016).

    [45] Voorhoeve R, de Rozario R, Aangenent W et al. Identifying position-dependent mechanical systems: a modal approach applied to a flexible wafer stage[J]. IEEE Transactions on Control Systems Technology, 29, 194-206(2021).

    [46] Doyle J, Glover K, Khargonekar P et al. State-space solutions to standard H2 and H∞ control problems[C], 1691-1696(1988).

    [47] Huang T, Yang K M, Zhu Y et al. Pole assignment control of MIMO motion systems with flexible structures and its application to an ultraprecision wafer stage[J]. IEEE/ASME Transactions on Mechatronics, 23, 2273-2284(2018).

    [48] Huang T, Yang K M, Zhu Y et al. LFT-structured uncertainty state-space modeling for state feedback robust control of the ultra-precision wafer stage[J]. IEEE Transactions on Industrial Electronics, 66, 8567-8577(2019).

    Longbin Jiang, Runze Ding, Chenyang Ding, Xiaofeng Yang, Yunlang Xu. Research Progress on Stage Control Methods for a Lithography Machine[J]. Laser & Optoelectronics Progress, 2022, 59(9): 0922003
    Download Citation