• Photonics Research
  • Vol. 10, Issue 6, 1401 (2022)
Hao Chen1、†, Zexing Zhao1、†, Ziming Zhang1, Guoqing Wang1, Jiatong Li1, Zhenyuan Shang1, Mengyu Zhang1, Kai Guo2、4、*, Junbo Yang3、5、*, and Peiguang Yan1、6、*
Author Affiliations
  • 1College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
  • 2Institute of Systems Engineering, AMS, Beijing 100039, China
  • 3College of Liberal Arts and Sciences, National University of Defense Technology, Changsha 410073, China
  • 4e-mail: guokai07203@hotmail.com
  • 5e-mail: yangjunbo@nudt.edu.cn
  • 6e-mail: yanpg@szu.edu.cn
  • show less
    DOI: 10.1364/PRJ.453520 Cite this Article Set citation alerts
    Hao Chen, Zexing Zhao, Ziming Zhang, Guoqing Wang, Jiatong Li, Zhenyuan Shang, Mengyu Zhang, Kai Guo, Junbo Yang, Peiguang Yan. Heterogeneous integrated phase modulator based on two-dimensional layered materials[J]. Photonics Research, 2022, 10(6): 1401 Copy Citation Text show less
    References

    [1] S. Brian, X. C. Ji, Y. Okawachi, A. L. Gaeta, M. Lipson. Battery-operated integrated frequency comb generator. Nature, 562, 401-405(2018).

    [2] M. La Notte, B. Troia, T. Muciaccia, C. E. Campanella, F. De Leonardis, V. M. N. Passaro. Recent advances in gas and chemical detection by Vernier effect-based photonic sensors. Sensors, 14, 4831-4855(2014).

    [3] Y. Tao, H. Shu, X. Wang, M. Jin, Z. Tao, F. Yang, J. Shi, J. Qin. Hybrid-integrated high-performance microwave photonic filter with switchable response. Photon. Res., 9, 1569-1580(2021).

    [4] X. Xue, X. Zheng, B. Zhou. Super-efficient temporal solitons in mutually coupled optical cavities. Nat. Photonics, 13, 616-622(2019).

    [5] Y. Okawachi, M. Lamont, K. Luke, D. Carvalho, M. Yu, M. Lipson, A. L. Gaeta. Bandwidth shaping of microresonator-based frequency combs via dispersion engineering. Opt. Lett., 39, 3535-3538(2014).

    [6] Y. Zhao, X. Ji, B. Y. Kim, P. S. Donvalkar, J. K. Jang, C. Joshi, M. Yu, C. Joshi, R. R. Domeneguetti, F. A. S. Barbosa, P. Nussenzveig, Y. Okawachi, M. Lipson, A. L. Gaeta. Visible nonlinear photonics via high-order-mode dispersion engineering. Optica, 7, 135-141(2020).

    [7] S. Yang, D. C. Liu, Z. L. Tan, K. Liu, Z. H. Zhu, S. Q. Qin. CMOS-compatible WS2-based all-optical modulator. ACS Photon., 5, 342-346(2018).

    [8] H. Lin, Z. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, J. Hu. Mid-infrared integrated photonics on silicon: a perspective. Nanophotonics, 7, 393-420(2018).

    [9] V. Sorianello, M. Midrio, G. Contestabile, I. Asselberghs, J. Van Campenhout, C. Huyghebaert, I. Goykhman, A. K. Ott, A. C. Ferrari, M. Romagnoli. Graphene–silicon phase modulators with gigahertz bandwidth. Nat. Photonics, 12, 40-44(2018).

    [10] I. Datta, S. H. Chae, G. R. Bhatt, M. A. Tadayon, B. Li, Y. Yu, C. Park, J. Park, L. Cao, D. N. Basov, J. Hone, M. Lipson. Low-loss composite photonic platform based on 2D semiconductor monolayers. Nat. Photonics, 14, 256-262(2020).

    [11] R. Zhang, J. A. Ma. Simple bidirectional hybrid optical link for alternatively providing wired and wireless accesses based on an optical phase modulator. Photon. Netw. Commun., 34, 478-485(2017).

    [12] W. Zhang, M. Ebert, B. Chen, J. D. Reynolds, X. Yan, H. Du, M. Banakar, D. T. Tran, K. Debnath, C. G. Littlejohns, S. Saito, D. J. Thomson. Integration of low loss vertical slot waveguides on SOI photonic platforms for high efficiency carrier accumulation modulators. Opt. Express, 28, 23143-23153(2020).

    [13] F. Eltes, G. E. Villarreal-Garcia, D. Caimi, H. Siegwart, A. A. Gentile, A. Hart, P. Stark, G. D. Marshall, M. G. Thompson, J. Barreto, J. Fompeyrine, S. Abel. An integrated optical modulator operating at cryogenic temperatures. Nat. Mater., 19, 1164-1168(2020).

    [14] J. E. Ortmann, F. Eltes, D. Caimi, N. Meier, A. A. Demkov, L. Czornomaz, J. Fompeyrine, S. Abel. Ultra-low-power tuning in hybrid barium titanate–silicon nitride electro-optic devices on silicon. ACS Photon., 6, 2677-2684(2019).

    [15] N. Ahmed, S. Shi, A. J. Mercante, D. W. Prather. High-performance racetrack resonator in silicon nitride thin film lithium niobate hybrid platform. Opt. Express, 27, 30741-30751(2019).

    [16] K. Alexander, J. P. George, J. Verbist, K. Neyts, B. Kuyken, D. V. Thourhout, J. Beeckman. Nanophotonic Pockels modulators on a silicon nitride platform. Nat. Commun., 9, 3444(2018).

    [17] P. Zhang, H. Huang, Y. Jiang, X. Han, H. Xiao, A. Frigg, T. G. Nguyen, A. Boes, G. Ren, Y. Su, Y. Tian, A. Mitchell. High-speed electro-optic modulator based on silicon nitride loaded lithium niobate on an insulator platform. Opt. Lett., 46, 5986-5989(2021).

    [18] C. Phare, Y. H. Daniel Lee, J. Cardenas, M. Lipson. Graphene electro-optic modulator with 30 GHz bandwidth. Nat. Photonics, 9, 511-514(2015).

    [19] J. Wang, X. Zhang, Y. Chen, Y. Geng, Y. Du, X. Li. Design of a graphene-based silicon nitride multimode waveguide-integrated electro-optic modulator. Opt. Commun., 481, 126531(2021).

    [20] C. Qiu, Y. Yang, C. Li, Y. Wang, K. Wu, J. Chen. All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect. Sci. Rep., 7, 17046(2017).

    [21] Z. Ruan, L. Pei, J. Wang, J. Zheng, J. Wang, J. Li, T. Ning, Q. Zhao, Y. Xi. All-optical graphene oxide modulator based on phase-shifted FBG. J. Lightwave Technol., 39, 5516-5522(2021).

    [22] Y. Meng, S. Ye, Y. Shen, Q. Xiao, X. Fu, R. Lu, Y. Liu, M. Gong. Waveguide engineering of graphene optoelectronics—modulators and polarizers. IEEE Photon. J., 10, 6600217(2018).

    [23] K. F. Mak, C. Lee, J. Hone, J. Shan, T. F. Heinz. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett., 105, 136805(2010).

    [24] T. Chu, H. Ilatikhameneh, G. Klimeck, R. Rahman, Z. Chen. Electrically tunable bandgaps in bilayer MoS2. Nano Lett., 15, 8000-8007(2015).

    [25] K. Mak, K. He, C. Lee, J. Hone, T. F. Heinz, J. Shan. Tightly bound trions in monolayer MoS2. Nat. Mater., 12, 207-211(2013).

    [26] N. Peimyoo, T. Deilmann, F. Withers, J. Escolar, D. Nutting, T. Taniguchi, K. Watanabe, A. Taghizadeh, M. F. Craciun, K. S. Thygesen, S. Russo. Electrical tuning of optically active interlayer excitons in bilayer MoS2. Nat. Nanotechnol., 16, 888-893(2021).

    [27] W. Zhao, S. Bi, C. Zhang, P. D. Rack, G. Feng. Adding solvent into ionic liquid-gated transistor: the anatomy of enhanced gating performance. ACS Appl. Mater. Interfaces, 11, 13822-13830(2019).

    [28] Y. Zhang, J. Ye, Y. Matsuhashi, Y. Iwasa. Ambipolar MoS2 thin flake transistors. Nano Lett., 12, 1136-1140(2012).

    [29] T. H. Tsai, A. K. Sahoo, H. K. Syu, Y. C. Wu, M. Y. Tsai, M. D. Siao, Y. C. Yang, Y. F. Lin, R. S. Liu, P. W. Chiu. WS2/WSe2 nanodot composite photodetectors for fast and sensitive light detection. ACS Appl. Electron. Mater., 3, 4291-4299(2021).

    [30] Y. Sun, R. Hu, C. An, X. Ma, J. Zhang, J. Liu. Visible to near-infrared photodetector based on SnSe2/WSe2 heterojunction with potential application in artificial visual neuron. Nanotechnology, 32, 475206(2021).

    [31] G. Wei, T. K. Stanev, D. A. Czaplewski, I. W. Jung, N. P. Stern. Silicon-nitride photonic circuits interfaced with monolayer MoS2. Appl. Phys. Lett., 107, 091112(2015).

    [32] Y. Dai, Y. Wang, S. Das, H. Xue, X. Bai, E. Hulkko, Z. Sun. Electrical control of interband resonant nonlinear optics in monolayer MoS2. ACS Nano, 14, 8442-8448(2020).

    [33] E. J. G. Santos, E. Kaxiras. Electrically driven tuning of the dielectric constant in MoS2 layers. ACS Nano, 7, 10741-10746(2013).

    [34] S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, J. Wang. Broadband few-layer MoS2 saturable absorbers. Adv. Mater., 26, 3538-3544(2014).

    [35] Y. Zhou, L. Tao, Z. Chen, H. Lai, W. Xie, J. Xu. Defect etching of phase-transition-assisted CVD-grown 2H-MoTe2. Small, 17, 2102146(2021).

    [36] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis. Single-layer MoS2 transistors. Nat. Nanotechnol., 6, 147-150(2011).

    [37] Y. Rho, J. Pei, L. Wang, Z. Su, M. Eliceiri, C. P. Grigoropoulos. Site-selective atomic layer precision thinning of MoS2 via laser-assisted anisotropic chemical etching. ACS Appl. Mater. Interfaces, 11, 39385-39393(2019).

    [38] X. Ji, F. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, M. Lipson. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. Optica, 4, 619-624(2017).

    [39] M. Zhang, R. C. Howe, R. I. Woodward, E. J. Kelleher, F. Torrisi, G. Hu, T. Hasan. Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser. Nano Res., 8, 1522-1534(2015).

    [40] K. Wu, X. Zhang, J. Wang, J. Chen. 463-MHz fundamental mode-locked fiber laser based on few-layer MoS2 saturable absorber. Opt. Lett., 40, 1374-1377(2015).

    [41] A. Pezeshki, S. H. H. Shokouh, T. Nazari, K. Oh, S. Im. Electric and photovoltaic behavior of a few-layer α-MoTe2/MoS2 dichalcogenide heterojunction. Adv. Mater., 28, 3216-3222(2016).

    [42] S. Rathi, I. Lee, D. Lim, J. Wang, Y. Ochiai, N. Aoki, K. Watanabe, T. Taniguchi, G.-H. Lee, Y.-J. Yu, P. Kim, G.-H. Kim. Tunable electrical and optical characteristics in monolayer graphene and few-layer MoS2 heterostructure devices. Nano Lett., 15, 5017-5024(2015).

    [43] D. Braga, I. G. Lezama, H. Berger, A. F. Morpurgo. Quantitative determination of the band gap of WS2 with ambipolar ionic liquid-gated transistors. Nano Lett., 12, 5218-5223(2012).

    [44] A. Kuc, N. Zibouche, T. Heine. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys. Rev. B., 83, 245213(2011).

    [45] Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, K. Yvind. Effective electro-optical modulation with high extinction ratio by a graphene–silicon microring resonator. Nano Lett., 15, 4393-4400(2015).

    [46] M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, X. Cai. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nat. Photonics, 13, 359-364(2019).

    [47] M. Li, L. Wang, X. Li, X. Xiao, S. Yu. Silicon intensity Mach–Zehnder modulator for single lane 100 Gb/s applications. Photon. Res., 6, 109-116(2018).

    [48] R. Amin, R. Maiti, Y. Gui, C. Suer, M. Miscuglio, E. Heidari, R. T. Chen, H. Dalir, V. J. Sorger. Sub-wavelength GHz-fast broadband ITO Mach–Zehnder modulator on silicon photonics. Optica, 7, 333-335(2020).

    [49] W. Jin, R. G. Polcawich, P. A. Morton, J. E. Bowers. Piezoelectrically tuned silicon nitride ring resonator. Opt. Express, 26, 3174-3187(2018).

    Hao Chen, Zexing Zhao, Ziming Zhang, Guoqing Wang, Jiatong Li, Zhenyuan Shang, Mengyu Zhang, Kai Guo, Junbo Yang, Peiguang Yan. Heterogeneous integrated phase modulator based on two-dimensional layered materials[J]. Photonics Research, 2022, 10(6): 1401
    Download Citation