• Opto-Electronic Advances
  • Vol. 5, Issue 8, 210127 (2022)
Svetlana Nikolaevna Khonina1、2、*, Nikolay Lvovich Kazanskiy1、2, Muhammad Ali Butt2、3, and Sergei Vladimirovich Karpeev1、2
Author Affiliations
  • 1IPSI RAS-Branch of the FSRC "Crystallography and Photonics" RAS, Samara 443001, Russia
  • 2Samara National Research University, Samara 443086, Russia
  • 3Warsaw University of Technology, Institute of Microelectronics and Optoelectronics, Koszykowa 75, Warszawa 00-662, Poland
  • show less
    DOI: 10.29026/oea.2022.210127 Cite this Article
    Svetlana Nikolaevna Khonina, Nikolay Lvovich Kazanskiy, Muhammad Ali Butt, Sergei Vladimirovich Karpeev. Optical multiplexing techniques and their marriage for on-chip and optical fiber communication: a review[J]. Opto-Electronic Advances, 2022, 5(8): 210127 Copy Citation Text show less
    References

    [2] Rademacher G, Luís RS, Puttnam BJ, Eriksson TA, Agrell E et al. 159 Tbit/s C+L band transmission over 1045 km 3-mode graded-index few-mode fiber. In ProceedingsoftheOpticalFiberCommunicationConference2018 1–3 (Optica Publishing Group, 2018); http://doi.org/10.1364/OFC.2018.Th4C.4.

    [22] Khonina SN, Kazanskiy NL, Soifer VA. Optical vortices in a fiber: mode division multiplexing and multimode self-imaging. In Yasin M, Harun SW, Arof H. Recent Progress in Optical Fiber Research. IntechOpen Publisher, Croatia, 2012.

    [25] Secondini M, Forestieri E. The limits of the nonlinear Shannon limit. In Proceedingsof2016OpticalFiberCommunicationsConferenceandExhibition (IEEE, 2016). https://doi.org/10.1 364/OFC.2016.Th3D.1

    [29] Saito Y, Kishiyama Y, Benjebbour A, Nakamura T, Li AX et al. Non-orthogonal multiple access (NOMA) for cellular future radio access. In Proceedingsofthe77thVehicularTechnologyConference (VTCSpring) 1–5 (IEEE, 2013);http://doi.org/10.1109/VTCSpring.2013.6692652.

    [31] Nosu K, Ishio H. A design of optical multi/demultiplexers for optical wavelength-division multiplexing transmission. TransIECE62-B, 1030–1036 (1979).

    [62] Sasaki Y, Takenaga K, Aikawa K, Miyamoto Y, Morioka T. Single-mode 37-core fiber with a cladding diameter of 248 μm. In Proceedingsof2017OpticalFiberCommunicationsConferenceandExhibition 1–3 (IEEE, 2017). https://doi.org/10.1364/OFC.2017.Th1H.2

    [64] Rademacher G, Luís RS, Puttnam BJ, Ryf R, Furukawa H et al. 93.34 Tbit/s/mode (280 Tbit/s) transmission in a 3-mode graded-index few-mode fiber. In Proceedingsof2018OpticalFiberCommunicationsConferenceandExposition 1–3 (IEEE, 2018). https://doi.org/10.1364/OFC.2018.W4C.3

    [82] Luo LW, Gabrielli LH, Lipson M. On-chip mode-division multiplexer. In ProceedingsoftheCLEO: ScienceandInnovations2013 1–2 (Optica Publishing Group, 2013);http://doi.org/10.1364/CLEO_SI.2013.CTh1C.6.

    [84] He Y, An SH, Li XF, Huang YT, Zhang Y et al. Record high-order mode-division-multiplexed transmission on chip using gradient-duty-cycle subwavelength gratings. In Proceedingsof2021OpticalFiberCommunicationsConferenceandExhibition 1–3 (IEEE, 2021).https://ieeexplore.ieee.org/document/9489861

    [87] Koonen AMJ, Chen HS, van den Boom HPA, Raz O. Silicon photonic integrated mode multiplexer and demultiplexer. IEEEPhotonicsTechnolLett24, 1961–1964 (2012). 88. https://doi.org/10.1109/LPT.2012.2219304

    [89] Dai DX. Silicon mode-(de) multiplexer for a hybrid multiplexing system to achieve ultrahigh capacity photonic networks-on-chip with a single-wavelength-carrier light. In Proceedingsof2012AsiaCommunicationsandPhotonicsConference 1–3 (IEEE, 2012). https://ieeexplore.ieee.org/abstract/document/6510982

    [90] Binici HI. Controlling light inside a multi-mode fiber by wavefront shaping. (The Graduate School of Natural and Applied Sciences of Middle East Technical University, 2018).http://dx.doi.org/10.13140/RG.2.2.35259.52005

    [96] Yan Y, Li L, Zhao Z, Xie GD, Wang Z et al. 32-Gbit/s 60-GHz millimeter-wave wireless communication using orbital angular momentum and polarization multiplexing. In Proceedingsof2016IEEEInternationalConferenceonCommunications (ICC) 1–6 (IEEE, 2016); http://doi.org/10.1109/ICC.2016.7511277.

    [102] Yan Y, Li L, Xie GD, Bao CJ, Liao PC et al. Experimental measurements of multipath-induced intra- and inter-channel crosstalk effects in a millimeter-wave communications link using orbital-angular-momentum multiplexing. In Proceedingsof2015IEEEInternationalConferenceonCommunications (ICC) 1370–1375 (IEEE, 2015);http://doi.org/10.1109/ICC.2015.7248514.

    [111] Kuo PC, Tong YY, Chow CW, Tsai JF, Liu Y et al. 4.36 Tbit/s silicon chip-to-chip transmission via few-mode fiber (FMF) using 2D sub-wavelength grating couplers. In ProceedingsoftheOpticalFiberCommunicationConference2021 (Optica Publishing Group, 2021); http://doi.org/10.1364/OFC.2021.M3D.6.

    [128] Dai DX. Silicon-based multi-channel mode (de)multiplexer for on-chip optical interconnects. In ProceedingsoftheIntegratedPhotonicsResearch, SiliconandNanophotonics2014 (Optica Publishing Group, 2014); http://doi.org/10.1364/IPRSN.2014.IM2A.2.

    [130] Kakati D, Sonkar RK. A 2×320 Gbps hybrid PDM-MDM-OFDM system for high-speed terrestrial FSO communication. In Proceedingsofthe14thPacificRimConferenceonLasersandElectro-Optics(CLEOPR2020) C5F_3 (Optica Publishing Group, 2020); http://doi.org/10.1364/CLEOPR.2020.C5F_3.

    [176] Korotkova O. RandomLightBeams: TheoryandApplications (CRC Press, Boca Raton, 2013).

    Svetlana Nikolaevna Khonina, Nikolay Lvovich Kazanskiy, Muhammad Ali Butt, Sergei Vladimirovich Karpeev. Optical multiplexing techniques and their marriage for on-chip and optical fiber communication: a review[J]. Opto-Electronic Advances, 2022, 5(8): 210127
    Download Citation