• Laser & Optoelectronics Progress
  • Vol. 57, Issue 18, 180001 (2020)
Yuchen Chen1, Chuankang Li1, Xiang Hao1, Cuifang Kuang1、2、3、*, and Xu Liu1、2
Author Affiliations
  • 1State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
  • 2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 0 30006, China
  • 3Ningbo Research Institute, Zhejiang University, Ningbo, Zhejiang 315100, China
  • show less
    DOI: 10.3788/LOP57.180001 Cite this Article Set citation alerts
    Yuchen Chen, Chuankang Li, Xiang Hao, Cuifang Kuang, Xu Liu. Progress of Point Scanning Super-Resolution Microscopy Based on Frequency Shifting[J]. Laser & Optoelectronics Progress, 2020, 57(18): 180001 Copy Citation Text show less
    References

    [2] Dublin Philosophical Magazine, Journal of Science[J]. Lord Rayleigh F R S. XII. On the manufacture, theory of diffraction-gratings. The London, Edinburgh, 47, 81-93(1874).

    [3] Minsky M. Memoir on inventing the confocal scanning microscope[J]. Scanning, 10, 128-138(1988).

    [4] Tearney G J, Webb R H, Bouma B E. Spectrally encoded confocal microscopy[J]. Optics Letters, 23, 1152-1154(1998).

    [5] Matthew White W, Rajadhyaksha M, Gonzalez S et al. Noninvasive imaging of human oral mucosa in vivo by confocal reflectance microscopy[J]. Laryngoscope, 109, 1709-1717(1999).

    [6] Busam K J, Charles C, Lee G et al. Morphologic features of melanocytes, pigmented keratinocytes, and melanophages by in vivo confocal scanning laser microscopy[J]. Modern Pathology, 14, 862-868(2001).

    [7] Fitzgerald A J, Berry E, Zinovev N N et al. An introduction to medical imaging with coherent terahertz frequency radiation[J]. Physics in Medicine and Biology, 47, R67-R84(2002).

    [8] Smolyaninov I I, Davis C C, Zayats A V. Image formation in surface plasmon polariton mirrors: applications in high-resolution optical microscopy[J]. New Journal of Physics, 7, 175(2005).

    [9] Zhang Y H, Poonja S, Roorda A. MEMS-based adaptive optics scanning laser ophthalmoscopy[J]. Optics Letters, 31, 1268-1270(2006).

    [10] Stender A S, Marchuk K, Liu C et al. Single cell optical imaging and spectroscopy[J]. Chemical Reviews, 113, 2469-2527(2013).

    [11] Brakenhoff G J, Blom P, Barends P J. Confocal scanning light microscopy with high aperture immersion lenses[J]. Journal of Microscopy, 117, 219-232(1979).

    [12] Borlinghaus R T. 13(3): i-iii[J]. Kappel C. HyVolution: the smart path to confocal super-resolution. Nature Methods(2016).

    [13] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 19, 780-782(1994).

    [14] Gustafsson M G L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. Journal of Microscopy, 198, 82-87(2000).

    [15] Gustafsson M G L, Shao L, Carlton P M et al. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination[J]. Biophysical Journal, 94, 4957-4970(2008).

    [16] Mudry E, Belkebir K, Girard J C et al. Structured illumination microscopy using unknown speckle patterns[J]. Nature Photonics, 6, 312-315(2012).

    [17] Betzig E, Patterson G H, Sougrat R et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 313, 1642-1645(2006).

    [18] Rust M J, Bates M, Zhuang X W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 3, 793-796(2006).

    [19] Hess S T. Girirajan T P K, Mason M D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy[J]. Biophysical Journal, 91, 4258-4272(2006).

    [20] Sheppard C J R. Super-resolution in confocal imaging[J]. Optik, 80, 53-54(1988).

    [21] Müller C B, Enderlein J. Image scanning microscopy[J]. Physical Review Letters, 104, 198101(2010).

    [22] super-resolution[J]. Nature Methods. 12(12): i-ii. Huff J. The Airyscan detector from ZEISS: confocal imaging with improved signal-to-noise ratio(2015).

    [23] Roth S, Sheppard C, Wicker K et al. Optical photon reassignment microscopy (OPRA)[J]. Optical Nanoscopy, 2, 5(2013).

    [24] Ge B L, Wang Y F, Huang Y J et al. Three-dimensional resolution and contrast-enhanced confocal microscopy with array detection[J]. Optics Letters, 41, 2013-2016(2016).

    [25] Sheppard C J R, Mehta S B, Heintzmann R. Superresolution by image scanning microscopy using pixel reassignment[J]. Optics Letters, 38, 2889-2892(2013).

    [26] Ge B L, Huang Y J, Fang Y et al. Frequency domain phase-shifted confocal microscopy (FDPCM) with array detection[J]. Journal of Modern Optics, 64, 1597-1603(2017).

    [27] Yu Z Z, Liu S C, Sun S Y et al. Imaging resolution and properties analysis of super resolution microscopy with parallel detection under different noise, detector and image restoration conditions[J]. Journal of Modern Optics, 65, 1188-1198(2018).

    [28] Zhu D Z, Fang Y, Chen Y H et al. Comparison of multi-mode parallel detection microscopy methods[J]. Optics Communications, 387, 275-280(2017).

    [29] Breedijk R M P, Brandt R A J et al. Re-scan confocal microscopy: scanning twice for better resolution[J]. Biomedical Optics Express, 4, 2644-2656(2013).

    [30] Breedijk R M P, Hoebe R A et al. Re-scan confocal microscopy (RCM) improves the resolution of confocal microscopy and increases the sensitivity[J]. Methods and Applications in Fluorescence, 5, 015002(2017).

    [31] Azuma T, Kei T. Super-resolution spinning-disk confocal microscopy using optical photon reassignment[J]. Optics Express, 23, 15003-15011(2015).

    [32] York A, Parekh S H, Nogare D D et al. Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy[J]. Nature Methods, 9, 749-754(2012).

    [33] Schulz O, Pieper C, Clever M et al. Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 110, 21000-21005(2013).

    [34] Wu J J, Li S W, Cao H Q et al. Resolution improvement of multifocal structured illumination microscopy with sparse Bayesian learning algorithm[J]. Optics Express, 26, 31430-31438(2018).

    [36] Chen Y H, Zhu D Z, Fang Y et al. A novel method for enhancing the lateral resolution and image SNR in confocal microscopy[J]. Optics Communications, 404, 184-188(2017).

    [37] Li Y C, Liu S C, Liu D H et al. Image scanning fluorescence emission difference microscopy based on a detector array[J]. Journal of Microscopy, 266, 288-297(2017).

    [38] Roider C, Ritsch-Marte M, Jesacher A. High-resolution confocal Raman microscopy using pixel reassignment[J]. Optics Letters, 41, 3825-3828(2016).

    [39] Wang W S, Zhang Z M, Liu S C et al. Stimulated emission depletion microscopy with array detection and photon reassignment[J]. Optics and Lasers in Engineering, 129, 106061(2020).

    [40] Zhi Y N, Wang B Q, Yao X C. Super-resolution scanning laser microscopy based on virtually structured detection[J]. Critical Reviews in Biomedical Engineering, 43, 297-322(2015).

    [41] Sun S Y, Liu S C, Wang W S et al. Improving the resolution of two-photon microscopy using pixel reassignment[J]. Applied Optics, 57, 6181-6187(2018).

    [42] Tzang O, Feldkhun D, Agrawal A et al. Two-photon PSF-engineered image scanning microscopy[J]. Optics Letters, 44, 895-898(2019).

    [43] Liu S C, Zhang Z M, Zheng J Y et al. Parallelized fluorescence lifetime imaging microscopy (FLIM) based on photon reassignment[J]. Optics Communications, 421, 83-89(2018).

    [44] Tenne R, Rossman U, Rephael B et al. Super-resolution enhancement by quantum image scanning microscopy[J]. Nature Photonics, 13, 116-122(2019).

    [45] Lu J, Min W, Conchello J A et al. Super-resolution laser scanning microscopy through spatiotemporal modulation[J]. Nano Letters, 9, 3883-3889(2009).

    [46] Lu R W, Wang B Q, Zhang Q X et al. Super-resolution scanning laser microscopy through virtually structured detection[J]. Biomedical Optics Express, 4, 1673-1682(2013).

    [47] Shroff S A, Fienup J R, Williams D R. Phase-shift estimation in sinusoidally illuminated images for lateral superresolution[J]. Journal of the Optical Society of America A-Optics Image Science and Vision, 26, 413-424(2009).

    [48] Zhi Y N, Lu R W, Wang B Q et al. Rapid super-resolution line-scanning microscopy through virtually structured detection[J]. Optics Letters, 40, 1683-1686(2015).

    [49] Kuang C F, Ma Y, Zhou R J et al. Virtual k-space modulation optical microscopy[J]. Physical Review Letters, 117, 028102(2016).

    [50] Cao R Z, Kuang C F, Yong L et al. Superresolution via saturated virtual modulation microscopy[J]. Optics Express, 25, 32364-32379(2017).

    [51] Huang Y J, Zhu D Z, Jin L H et al. Laser scanning saturated structured illumination microscopy based on phase modulation[J]. Optics Communications, 396, 261-266(2017).

    [52] Zhao G Y, Zheng C, Kuang C F et al. Nonlinear focal modulation microscopy[J]. Physical Review Letters, 120, 193901(2018).

    [53] Yamanaka M, Tzeng Y, Kawano S et al. SAX microscopy with fluorescent nanodiamond probes for high-resolution fluorescence imaging[J]. Biomedical Optics Express, 2, 1946-1954(2011).

    [54] Eggeling C, Volkmer A. Seidel C A M. Molecular photobleaching kinetics of rhodamine 6G by one- and two-photon induced confocal fluorescence microscopy[J]. ChemPhysChem, 6, 791-804(2005).

    [55] Laporte G P J, Stasio N, Sheppard C J R et al. Resolution enhancement in nonlinear scanning microscopy through post-detection digital computation[J]. Optica, 1, 455-460(2014).

    [56] Krzic U[2020-04-27]. Multiple-view microscopy with light-sheet based fluorescence microscope [2020-04-27].https://www.researchgate.net/publication/33429476_Multiple-View_Microscopy_with_Light-Sheet_Based_Fluorescence_Micr.

    [57] Preibisch S, Amat F, Stamataki E et al. -02-02)[2020-04-27], org/abs/1308, 0730(2014). https://arxiv.

    [58] Heintzmann R. Estimating missing information by maximum likelihood deconvolution[J]. Micron, 38, 136-144(2007).

    [59] Chen Y C, Zhang C F, Kuang C F. Nonlinear focal modulation microscopy based on interleaved reconstruction[J]. Proceedings of SPIE, 1118, 1118611(2019).

    [60] Dertinger T, Colyer R, Iyer G et al. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI)[J]. Proceedings of the National Academy of Sciences of the United States of America, 106, 22287-22292(2009).

    [61] Zhao G Y, Kabir M M, Toussaint K C et al. Saturated absorption competition microscopy[J]. Optica, 4, 633-636(2017).

    [62] Fu Y, Wang T L, Zhao S. Imaging principles and applications of super-resolution optical microscopy[J]. Laser & Optoelectronics Progress, 56, 240002(2019).

    [63] Hu C G, Zha R D, Ling Q Y et al. Super-resolution microscopy applications and development in living cell[J]. Infrared and Laser Engineering, 46, 15-25(2017).

    [64] Lin D Y, Qu J L. Recent progress on super-resolution imaging and correlative super-resolution microscopy[J]. Acta Physica Sinica, 66, 246-268(2017).

    Yuchen Chen, Chuankang Li, Xiang Hao, Cuifang Kuang, Xu Liu. Progress of Point Scanning Super-Resolution Microscopy Based on Frequency Shifting[J]. Laser & Optoelectronics Progress, 2020, 57(18): 180001
    Download Citation