• Photonics Research
  • Vol. 10, Issue 4, 1071 (2022)
Pingzhun Ma1, Junda Zhu2, Ying Zhong3, and Haitao Liu1、*
Author Affiliations
  • 1Institute of Modern Optics, College of Electronic Information and Optical Engineering, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China
  • 2College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387, China
  • 3State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China
  • show less
    DOI: 10.1364/PRJ.449154 Cite this Article Set citation alerts
    Pingzhun Ma, Junda Zhu, Ying Zhong, Haitao Liu. Theories of indirect chiral coupling and proposal of Fabry–Perot resonance as a flexible chiral-coupling interface[J]. Photonics Research, 2022, 10(4): 1071 Copy Citation Text show less
    References

    [1] P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, P. Zoller. Chiral quantum optics. Nature, 541, 473-480(2017).

    [2] K. Y. Bliokh, A. Y. Bekshaev, F. Nori. Optical momentum, spin, and angular momentum in dispersive media. Phys. Rev. Lett., 119, 073901(2017).

    [3] K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, A. V. Zayats. Spin–orbit interactions of light. Nat. Photonics, 9, 796-808(2015).

    [4] K. Y. Bliokh, F. Nori. Transverse spin of a surface polariton. Phys. Rev. A, 85, 061801(2012).

    [5] K. Y. Bliokh, A. Y. Bekshaev, F. Nori. Extraordinary momentum and spin in evanescent waves. Nat. Commun., 5, 3300(2014).

    [6] K. Y. Bliokh, F. Nori. Transverse and longitudinal angular momenta of light. Phys. Rep., 592, 1-38(2015).

    [7] M. Neugebauer, T. Bauer, A. Aiello, P. Banzer. Measuring the transverse spin density of light. Phys. Rev. Lett., 114, 063901(2015).

    [8] M. Neugebauer, J. S. Eismann, T. Bauer, P. Banzer. Magnetic and electric transverse spin density of spatially confined light. Phys. Rev. X, 8, 021042(2018).

    [9] A. Aiello, P. Banzer, M. Neugebauer, G. Leuchs. From transverse angular momentum to photonic wheels. Nat. Photonics, 9, 789-795(2015).

    [10] T. Van Mechelen, Z. Jacob. Universal spin-momentum locking of evanescent waves. Optica, 3, 118-126(2016).

    [11] M. F. Picardi, A. V. Zayats, F. J. Rodríguez-Fortuño. Janus and Huygens dipoles: near-field directionality beyond spin-momentum locking. Phys. Rev. Lett., 120, 117402(2018).

    [12] F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, A. V. Zayats. Near-field interference for the unidirectional excitation of electromagnetic guided modes. Science, 340, 328-330(2013).

    [13] K. Y. Bliokh, D. Smirnova, F. Nori. Quantum spin Hall effect of light. Science, 348, 1448-1451(2015).

    [14] A. Y. Bekshaev, K. Y. Bliokh, F. Nori. Transverse spin and momentum in two-wave interference. Phys. Rev. X, 5, 011039(2015).

    [15] S. Saha, A. K. Singh, S. K. Ray, A. Banerjee, S. D. Gupta, N. Ghosh. Transverse spin and transverse momentum in scattering of plane waves. Opt. Lett., 41, 4499-4502(2016).

    [16] A. K. Singh, S. Saha, S. D. Gupta, N. Ghosh. Transverse spin in the scattering of focused radially and azimuthally polarized vector beams. Phys. Rev. A, 97, 043823(2018).

    [17] J. Eismann, L. Nicholls, D. Roth, M. A. Alonso, P. Banzer, F. Rodríguez-Fortuño, A. Zayats, F. Nori, K. Bliokh. Transverse spinning of unpolarized light. Nat. Photonics, 15, 156-161(2021).

    [18] C. Triolo, A. Cacciola, S. Patanè, R. Saija, S. Savasta, F. Nori. Spin-momentum locking in the near field of metal nanoparticles. ACS Photonics, 4, 2242-2249(2017).

    [19] S. Saha, A. K. Singh, N. Ghosh, S. D. Gupta. Effects of mode mixing and avoided crossings on the transverse spin in a metal-dielectric-metal sphere. J. Opt., 20, 025402(2018).

    [20] X. Piao, S. Yu, N. Park. Design of transverse spinning of light with globally unique handedness. Phys. Rev. Lett., 120, 203901(2018).

    [21] L. Peng, L. Duan, K. Wang, F. Gao, S. Zhang. Transverse photon spin of bulk electromagnetic waves in bianisotropic media. Nat. Photonics, 13, 878-882(2019).

    [22] S. Luo, L. He, M. Li. Spin-momentum locked interaction between guided photons and surface electrons in topological insulators. Nat. Commun., 8, 2141(2017).

    [23] S. Barik, A. Karasahin, C. Flower, T. Cai, H. Miyake, W. DeGottardi, M. Hafezi, E. Waks. A topological quantum optics interface. Science, 359, 666-668(2018).

    [24] F. J. Rodríguez-Fortuño, N. Engheta, A. Martínez, A. V. Zayats. Lateral forces on circularly polarizable particles near a surface. Nat. Commun., 6, 8799(2015).

    [25] M. Antognozzi, C. Bermingham, R. Harniman, S. Simpson, J. Senior, R. Hayward, H. Hoerber, M. Dennis, A. Bekshaev, K. Bliokh. Direct measurements of the extraordinary optical momentum and transverse spin-dependent force using a nano-cantilever. Nat. Phys., 12, 731-735(2016).

    [26] F. Kalhor, T. Thundat, Z. Jacob. Universal spin-momentum locked optical forces. Appl. Phys. Lett., 108, 061102(2016).

    [27] S. Wang, B. Hou, W. Lu, Y. Chen, Z. Zhang, C. T. Chan. Arbitrary order exceptional point induced by photonic spin–orbit interaction in coupled resonators. Nat. Commun., 10, 832(2019).

    [28] Y. Long, D. Zhang, C. Yang, J. Ge, H. Chen, J. Ren. Realization of acoustic spin transport in metasurface waveguides. Nat. Commun., 11, 4716(2020).

    [29] R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, A. Rauschenbeutel. Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide. Nat. Commun., 5, 5713(2014).

    [30] R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, A. Rauschenbeutel. Exploiting the local polarization of strongly confined light for sub-micrometer-resolution internal state preparation and manipulation of cold atoms. Phys. Rev. A, 89, 063829(2014).

    [31] J. Petersen, J. Volz, A. Rauschenbeutel. Chiral nanophotonic waveguide interface based on spin-orbit interaction of light. Science, 346, 67-71(2014).

    [32] C. Sayrin, C. Junge, R. Mitsch, B. Albrecht, D. O’Shea, P. Schneeweiss, J. Volz, A. Rauschenbeutel. Nanophotonic optical isolator controlled by the internal state of cold atoms. Phys. Rev. X, 5, 041036(2015).

    [33] S. Scheel, S. Y. Buhmann, C. Clausen, P. Schneeweiss. Directional spontaneous emission and lateral Casimir-Polder force on an atom close to a nanofiber. Phys. Rev. A, 92, 043819(2015).

    [34] M. Scheucher, A. Hilico, E. Will, J. Volz, A. Rauschenbeutel. Quantum optical circulator controlled by a single chirally coupled atom. Science, 354, 1577-1580(2016).

    [35] F. Le Kien, A. Rauschenbeutel. Nanofiber-mediated chiral radiative coupling between two atoms. Phys. Rev. A, 95, 023838(2017).

    [36] B. Le Feber, N. Rotenberg, L. Kuipers. Nanophotonic control of circular dipole emission. Nat. Commun., 6, 6695(2015).

    [37] I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. El-Ella, E. H. Lee, J. D. Song. Deterministic photon–emitter coupling in chiral photonic circuits. Nat. Nanotechnol., 10, 775-778(2015).

    [38] A. B. Young, A. Thijssen, D. M. Beggs, P. Androvitsaneas, L. Kuipers, J. G. Rarity, S. Hughes, R. Oulton. Polarization engineering in photonic crystal waveguides for spin-photon entanglers. Phys. Rev. Lett., 115, 153901(2015).

    [39] S. Mahmoodian, P. Lodahl, A. S. Sørensen. Quantum networks with chiral-light–matter interaction in waveguides. Phys. Rev. Lett., 117, 240501(2016).

    [40] J. Hu, T. Xia, X. Cai, S. Tian, H. Guo, S. Zhuang. Right- and left-handed rules on the transverse spin angular momentum of a surface wave of photonic crystal. Opt. Lett., 42, 2611-2614(2017).

    [41] B. Lang, R. Oulton, D. M. Beggs. Optimised photonic crystal waveguide for chiral light–matter interactions. J. Opt., 19, 045001(2016).

    [42] T. Li, A. Miranowicz, X. Hu, K. Xia, F. Nori. Quantum memory and gates using a Λ-type quantum emitter coupled to a chiral waveguide. Phys. Rev. A, 97, 062318(2018).

    [43] F. Zhang, J. Ren, L. Shan, X. Duan, Y. Li, T. Zhang, Q. Gong, Y. Gu. Chiral cavity quantum electrodynamics with coupled nanophotonic structures. Phys. Rev. A, 100, 053841(2019).

    [44] R. Coles, D. Price, J. Dixon, B. Royall, E. Clarke, P. Kok, M. Skolnick, A. Fox, M. Makhonin. Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer. Nat. Commun., 7, 11183(2016).

    [45] D. Hurst, D. Price, C. Bentham, M. Makhonin, B. Royall, E. Clarke, P. Kok, L. Wilson, M. Skolnick, A. Fox. Nonreciprocal transmission and reflection of a chirally coupled quantum dot. Nano Lett., 18, 5475-5481(2018).

    [46] A. Javadi, D. Ding, M. H. Appel, S. Mahmoodian, M. C. Löbl, I. Söllner, R. Schott, C. Papon, T. Pregnolato, S. Stobbe. Spin–photon interface and spin-controlled photon switching in a nanobeam waveguide. Nat. Nanotechnol., 13, 398-403(2018).

    [47] D. Ding, M. H. Appel, A. Javadi, X. Zhou, M. C. Löbl, I. Söllner, R. Schott, C. Papon, T. Pregnolato, L. Midolo. Coherent optical control of a quantum-dot spin-qubit in a waveguide-based spin-photon interface. Phys. Rev. Appl., 11, 031002(2019).

    [48] P. Mrowiński, P. Schnauber, P. Gutsche, A. Kaganskiy, J. Schall, S. Burger, S. Rodt, S. Reitzenstein. Directional emission of a deterministically fabricated quantum dot–Bragg reflection multimode waveguide system. ACS Photonics, 6, 2231-2237(2019).

    [49] D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni. What is—and what is not—an optical isolator. Nat. Photonics, 7, 579-582(2013).

    [50] L. Tang, J. Tang, W. Zhang, G. Lu, H. Zhang, Y. Zhang, K. Xia, M. Xiao. On-chip chiral single-photon interface: isolation and unidirectional emission. Phys. Rev. A, 99, 043833(2019).

    [51] W. L. Barnes, A. Dereux, T. W. Ebbesen. Surface plasmon subwavelength optics. Nature, 424, 824-830(2003).

    [52] D. K. Gramotnev, S. I. Bozhevolnyi. Plasmonics beyond the diffraction limit. Nat. Photonics, 4, 83-91(2010).

    [53] C. Schörner, S. Adhikari, M. Lippitz. A single-crystalline silver plasmonic circuit for visible quantum emitters. Nano Lett., 19, 3238-3243(2019).

    [54] M. Thomaschewski, Y. Yang, C. Wolff, A. S. Roberts, S. I. Bozhevolnyi. On-chip detection of optical spin–orbit interactions in plasmonic nanocircuits. Nano Lett., 19, 1166-1171(2019).

    [55] T.-Y. Chen, D. Tyagi, Y.-C. Chang, C.-B. Huang. A polarization-actuated plasmonic circulator. Nano Lett., 20, 7543-7549(2020).

    [56] X. Guo, Y. Ma, Y. Wang, L. Tong. Nanowire plasmonic waveguides, circuits and devices. Laser Photonics Rev., 7, 855-881(2013).

    [57] S. H. Gong, F. Alpeggiani, B. Sciacca, E. C. Garnett, L. Kuipers. Nanoscale chiral valley-photon interface through optical spin-orbit coupling. Science, 359, 443-447(2018).

    [58] S.-H. Gong, I. Komen, F. Alpeggiani, L. Kuipers. Nanoscale optical addressing of valley pseudospins through transverse optical spin. Nano Lett., 20, 4410-4415(2020).

    [59] Q. Guo, T. Fu, J. Tang, D. Pan, H. Xu. Routing a chiral Raman signal based on spin-orbit interaction of light. Phys. Rev. Lett., 123, 183903(2019).

    [60] M. Rothe, Y. Zhao, J. Müller, G. Kewes, C. T. Koch, Y. Lu, O. Benson. Self-assembly of plasmonic nanoantenna–waveguide structures for subdiffractional chiral sensing. ACS Nano, 15, 351-361(2020).

    [61] D. Martin-Cano, H. R. Haakh, N. Rotenberg. Chiral emission into nanophotonic resonators. ACS Photonics, 6, 961-966(2019).

    [62] L. Shan, F. Zhang, J. Ren, Q. Zhang, Q. Gong, Y. Gu. Large Purcell enhancement with nanoscale non-reciprocal photon transmission in chiral gap-plasmon-emitter systems. Opt. Express, 28, 33890-33899(2020).

    [63] F. Lei, G. Tkachenko, X. Jiang, J. M. Ward, L. Yang, S. N. Chormaic. Enhanced directional coupling of light with a whispering gallery microcavity. ACS Photonics, 7, 361-365(2020).

    [64] P. Lodahl, S. Mahmoodian, S. Stobbe. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys., 87, 347-400(2015).

    [65] P. Yao, V. Manga Rao, S. Hughes. On-chip single photon sources using planar photonic crystals and single quantum dots. Laser Photonics Rev., 4, 499-516(2010).

    [66] M. Arcari, I. Söllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe. Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. Phys. Rev. Lett., 113, 093603(2014).

    [67] M. F. Picardi, A. Manjavacas, A. V. Zayats, F. J. Rodríguez-Fortuño. Unidirectional evanescent-wave coupling from circularly polarized electric and magnetic dipoles: an angular spectrum approach. Phys. Rev. B, 95, 245416(2017).

    [68] C. Sauvan, J. P. Hugonin, I. Maksymov, P. Lalanne. Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators. Phys. Rev. Lett., 110, 237401(2013).

    [69] P. Lalanne, W. Yan, K. Vynck, C. Sauvan, J. P. Hugonin. Light interaction with photonic and plasmonic resonances. Laser Photonics Rev., 12, 1700113(2018).

    [70] E. A. Muljarov, T. Weiss. Resonant-state expansion for open optical systems: generalization to magnetic, chiral, and bi-anisotropic materials. Opt. Lett., 43, 1978-1981(2018).

    [71] P. Lalanne, W. Yan, A. Gras, C. Sauvan, J.-P. Hugonin, M. Besbes, G. Demésy, M. Truong, B. Gralak, F. Zolla, A. Nicolet, F. Binkowski, L. Zschiedrich, S. Burger, J. Zimmerling, R. Remis, P. Urbach, H. T. Liu, T. Weiss. Quasinormal mode solvers for resonators with dispersive materials. J. Opt. Soc. Am. A, 36, 686-704(2019).

    [72] G. Lecamp, J. P. Hugonin, P. Lalanne. Theoretical and computational concepts for periodic optical waveguides. Opt. Express, 15, 11042-11060(2007).

    [73] C. Vassallo. Optical Waveguide Concepts(1991).

    [74] E. D. Palik. Handbook of Optical Constants of Solids, Part II(1985).

    [75] J. S. Huang, V. Callegari, P. Geisler, C. Bruning, J. Kern, J. C. Prangsma, X. F. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, B. Hecht. Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry. Nat. Commun., 1, 150(2010).

    [76] J. P. Hugonin, P. Lalanne. Perfectly matched layers as nonlinear coordinate transforms: a generalized formalization. J. Opt. Soc. Am. A, 22, 1844-1849(2005).

    [77] H. Liu. The Calculation is Performed with an In-House Software: DIF CODE for Modeling Light Diffraction in Nanostructures(2010).

    [78] L. Li. Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings. J. Opt. Soc. Am. A, 13, 1024-1035(1996).

    [79] H. Jia, P. Lalanne, H. Liu. Comprehensive surface-wave description for the nano-scale energy concentration with resonant dipole antennas. Plasmonics, 11, 1025-1033(2016).

    [80] M. Sartison, S. L. Portalupi, T. Gissibl, M. Jetter, H. Giessen, P. Michler. Combining in-situ lithography with 3D printed solid immersion lenses for single quantum dot spectroscopy. Sci. Rep., 7, 39916(2017).

    [81] M. Pelton. Modified spontaneous emission in nanophotonic structures. Nat. Photonics, 9, 427-435(2015).

    [82] A. F. Koenderink. Single-photon nanoantennas. ACS Photonics, 4, 710-722(2017).

    [83] T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, M. H. Mikkelsen. Ultrafast spontaneous emission source using plasmonic nanoantennas. Nat. Commun., 6, 7788(2015).

    [84] D. E. Chang, A. S. Sørensen, P. R. Hemmer, M. D. Lukin. Strong coupling of single emitters to surface plasmons. Phys. Rev. B, 76, 035420(2007).

    [85] R. Faggiani, J. Yang, P. Lalanne. Quenching, plasmonic, and radiative decays in nanogap emitting devices. ACS Photonics, 2, 1739-1744(2015).

    [86] W. Zhu, T. Xu, H. Wang, C. Zhang, P. B. Deotare, A. Agrawal, H. J. Lezec. Surface plasmon polariton laser based on a metallic trench Fabry-Perot resonator. Sci. Adv., 3, e1700909(2017).

    [87] D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, J. Reichel. A fiber Fabry–Perot cavity with high finesse. New J. Phys., 12, 065038(2010).

    [88] X. Chen, C. Chardin, K. Makles, C. Caër, S. Chua, R. Braive, I. Robert-Philip, T. Briant, P.-F. Cohadon, A. Heidmann. High-finesse Fabry–Perot cavities with bidimensional Si3N4 photonic-crystal slabs. Light Sci. Appl., 6, e16190(2017).

    [89] G. B. Arfken, H. J. Weber, F. E. Harris. Mathematical Methods for Physicists(2005).

    Pingzhun Ma, Junda Zhu, Ying Zhong, Haitao Liu. Theories of indirect chiral coupling and proposal of Fabry–Perot resonance as a flexible chiral-coupling interface[J]. Photonics Research, 2022, 10(4): 1071
    Download Citation