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The chiral coupling of an emitter to waveguide mode, i.e., the propagation direction of the excited waveguide
mode is locked to the transverse spin (T-spin) of a circularly polarized emitter, has exhibited unprecedented
applications in nanophotonics and quantum information processing. This chiral coupling can be largely enhanced
in terms of unidirectivity, efficiency, and spontaneous emission rate by introducing resonant modes as coupling
interfaces. However, this indirect chiral coupling still undergoes limitations in flexibility and miniaturization, and
the underlying physical mechanisms are to be clarified. Here, we present an intuitive and rigorous approach for
analyzing the direct/indirect chiral coupling, and thereout, derive some general relations between the chiral-
coupling directionality and the T-spin of the field or emitter. Based on the theories, we propose an indirect
chiral-coupling system on the platform of surface plasmon polariton (SPP), with a nanocavity supporting
Fabry–Perot (FP) resonance of dual SPP modes serving as a novel coupling interface. The FP resonance provides
flexible design freedoms which can modulate the chirality of the T-spin (and the resultant chiral-coupling di-
rectionality) to flip or disappear. A unidirectivity up to 99.9% along with a high coupling efficiency and enhance-
ment of spontaneous emission rate is achieved. Two first-principles-based SPP models for the reciprocal and
original problems are built up to verify the decisive role of the FP resonance in achieving the chiral coupling.
The proposed theories and novel chiral-coupling interface will be beneficial to the design of more compact and
flexible chiral-coupling systems for diverse applications. © 2022 Chinese Laser Press

https://doi.org/10.1364/PRJ.449154

1. INTRODUCTION

Chiral quantum optics [1] has been established and developed
rapidly in recent years. It begins with the study of a novel spin–
orbit coupling of photons in strong transversely confined light
field. Rich controllable degrees of freedom of photons [2] en-
able a variety of spin–orbit coupling interactions [3], of which
an important effect is called chiral coupling. Due to the
considerable longitudinal (along the propagation direction)
component of the electric field in the region of the strong trans-
versely confined field, an extraordinary transversely circularly
polarized state of photons will be generated. This is called trans-
verse spin (T-spin) [4–9], where the angular-momentum direc-
tion of the electric field rotation (i.e., spin direction) is
perpendicular to the propagation direction of light. T-spin is
usually spatially localized, with a prototypical feature that
the spin direction is locked to the propagation direction of
the waveguide mode, i.e., the spin-momentum locking effect

[9–12], or the quantum spin Hall effect of photons [13].
T-spin also exists in some special free-space light field [14–17]
and near field of nanoparticles [18,19]. Bulk modes with global
T-spin have been constructed with sophisticated inversely de-
signed metamaterials [20,21]. Recently, the research of T-spin
has been extended to topological physics [22,23], optical forces
[24–26], exceptional point [27], sound field [28], etc. Apart
from the research significance of T-spin, it has inspired the
exploration of many applications, of which the most striking
one is the chiral coupling between a circularly polarized emitter
and waveguide modes. Relying on the spin-momentum lock-
ing, the stationary matter qubits (spins) carried in the emission
source can be read out deterministically and converted into fly-
ing photonic qubits (waveguide modes) for remote information
exchange. Based on the platforms of nanofiber waveguides
[29–35], photonic crystal waveguides [36–43], and dielectric
nanobeam waveguides [44–48], T-spin and chiral-coupling
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effect have been applied to exploit a variety of functional de-
vices, including quantum information network nodes [39],
quantum gates [42], quantum entanglements [38], nanopho-
tonic non-reciprocal [49] devices of isolators [32,50] and cir-
culators [34] by using the spin-polarized atoms or quantum
dots as non-reciprocal absorbers, and are expected to play an
important role in on-chip integrated photonic circuits and
quantum information processing.

Surface plasmon polaritons (SPPs) can confine the electro-
magnetic field down to deep subwavelength scale with signifi-
cant local field enhancement [51,52]. It can be utilized to
facilitate on-chip integrated and more miniaturized photonic
devices [53–56]. With the chiral coupling between emission
sources and waveguide modes supported in metal nanowires,
the deterministic readout [57] and initialization [58] of valley
degrees of freedom in two-dimensional materials, chiral Raman
signal detection [59], and on-chip chiral material sensing [60]
have been studied on the platform of SPPs.

In addition to the direct chiral coupling between sources and
waveguide modes, the indirect chiral coupling can be achieved
by introducing the resonant modes as coupling intermediaries.
Compared with the waveguide modes, the resonant modes pro-
vide stronger chiral field, which can significantly enhance the
coupling between the chiral field and emitters [43,50,61],
absorbers [32,34,50], or scatterers [27], and can simultaneously
enhance the spontaneous emission rate of the chiral source
[43,62], or the loss rate of unidirectional waveguide modes
caused by chiral absorbers [32,34]. So far, the whispering gal-
lery mode (WGM) supported in the dielectric microcavity has
been introduced into nanofiber waveguide systems [32,34,63]
and silicon waveguide systems [50] to implement indirect chiral
coupling. The chiral coupling between the source and WGMs
is similar to that between the source and waveguide modes [61],
which originates from the fact that these two degenerate
counter-propagating WGMs have opposite chiralities of T-spin
at the position of the source. In addition, by introducing a met-
allic nanoparticle into a photonic crystal waveguide [43] or a
metallic nanoblock into a dielectric nanowire waveguide [62],
localized surface plasmon resonance (LSPR) modes have been
exploited to improve the chiral-coupling rate and the sponta-
neous emission rate of the chiral source. However, these indi-
rect chiral-coupling systems with LSPRs are still restricted by
the fact that the sources must be in the limited evanescent-field
region of waveguide modes (similar to the case of direct chiral-
coupling systems), and are difficult to fabricate due to the
sophisticated design of the structures. Furthermore, indirect
chiral-coupling systems more compact than the WGM micro-
cavity are still lacking and need to be explored to meet the re-
quirement of miniaturization in integrated photonic circuits.

Concerning the theories for analyzing the chiral coupling
from an emitter to waveguide modes, the waveguide mode ex-
pansion of Green’s function (WME-GF) [36,38,64,65] or its
equivalent forms [10,11,36,37,44,64] can provide an analytical
dependence of the coupling rate on the position and polariza-
tion of the emitter and on the electromagnetic field of the wave-
guide modes, and has been a commonly used approach to
achieve an intuitive explanation and quantitative calculation
of the chiral-coupling rate. The WME-GF is applicable to

the direct chiral-coupling system (i.e., a waveguide without ad-
ditional coupling structures that may support resonant modes),
and its complex-conjugate form is rigorous for lossless wave-
guide modes (see details in Section 2). The chiral-coupling rate
can be also calculated exactly by extracting the waveguide mode
coefficients from the total field with the mode orthogonality
theorem [48] or calculated approximately by calculating the
power of the total field on the waveguide cross section far away
from the emitter [43,57,62,66], which is performed in a fully
numerical way without an intuitive analyticity. The angular spec-
trum approach [12,67] has been employed to provide an intui-
tive explanation of the chiral coupling but not for a quantitative
calculation of the chiral-coupling rate. The quasinormal mode
(QNM) expansion theory is used for analyzing the chiral cou-
pling between the source and WGMs [61], which are resonant
eigenmodes at complex eigenfrequencies [68–71] different from
waveguide modes at real frequencies. Presently, there is still a lack
of intuitive and quantitative theoretical approaches for analyzing
the indirect chiral coupling between the emission source and
waveguide modes mediated by resonant modes.

In this paper, we first present a general approach based on
the reciprocity theorem for an intuitive analysis and rigorous
calculation of the chiral-coupling coefficient (β) from the
source to the waveguide mode (Section 2). With this approach,
we derive the conditions for the occurrence of chiral coupling,
and some general relations between the chiral-coupling direc-
tionality (g) and the T-spin (S3) of the field or source. We
emphasize that these theories are generally applicable to any
direct/indirect chiral-coupling systems and to any lossless/lossy
waveguide modes.

Based on the theories, we propose to use the Fabry–Perot
(FP) resonant mode formed by dual SPP modes as a novel way
to achieve the indirect chiral coupling between the source and
waveguide mode (Section 3). This way gets rid of the restriction
that the source must be located in the limited evanescent-field
region of the waveguide mode for the direct chiral-coupling
system, which is a merit similar to that of the indirect chiral
coupling mediated by the WGM microcavity [32,34,50,63],
and additionally benefits from the deep-subwavelength foot-
print of the SPP FP-nanocavity. The different orders of FP res-
onance provide new and flexible design freedoms to control the
directionality (g) of chiral coupling and can simultaneously
achieve an enhancement of the chiral-coupling rate (ΓSPP,�)
of the SPP waveguide mode, the total spontaneous emission
rate (Γtotal) of the source, and the chiral-coupling efficiency
(η� � ΓSPP,�∕Γtotal). Therefore, the proposed system is ex-
pected to attain a fast and deterministic readout of the spins
of the source on a more compact and flexibly designed chip.
Two first-principles-based SPP models are built up for the
reciprocal and original problems, respectively, which quantita-
tively verify the decisive role of the FP resonance in achieving
the chiral coupling and the simultaneous enhancement of the
spontaneous emission rate.

2. GENERAL THEORIES OF INDIRECT CHIRAL
COUPLING

In this section, we will present a general approach based on
the reciprocity theorem for an intuitive analysis and rigorous
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calculation of the direct or indirect chiral-coupling coefficients
from the source to waveguide modes. For the coupling system,
a point source located at r0 � �x0, y0, z0� can be expressed as a
current density j � δ�r − r0�p. According to the reciprocity
theorem [72,73], the coefficients of the mth waveguide mode
excited by the point source can be expressed as

β�,m � Ecoupling
−,m �r0� · p
hψ−,mjψ�,mi

, β−,m � Ecoupling
�,m �r0� · p
hψ−,mjψ�,mi

, (1)

where ψ � �E,H� denotes both the electric field E and the
magnetic field H. ψ�,m and ψ−,m represent the mth waveguide
modes with unitary coefficients (or called normalized modes)
propagating along positive and negative directions of the z axis,
respectively, with the z axis set along the translationally invari-
ant direction of the waveguide. Ecoupling

�,m �r0� or Ecoupling
−,m �r0� de-

notes the electric field at r0 excited by an incident ψ�,m or ψ−,m,
respectively, and corresponds to the reciprocal problem for
which the point source is absent [as shown by Fig. 1(b)].
The problem with the excitation of the point source is called
the original problem in this paper [as shown by Fig. 1(a)].
In Eq. (1), a bilinear function is defined as

hψ1jψ2i �
ZZ

z�z1
�E2 ×H1 − E1 ×H2� · zdxdy, (2)

where z1 can be selected arbitrarily. Equation (1) is generally
applicable to any direct/indirect coupling systems (i.e., wave-
guide without/with additional coupling structures that may
support resonant modes), in which the polarization of the
source can be arbitrary. In particular, in direct coupling systems,

Ecoupling
�,m �r0� � E�,m�r0�, reducing to the electric field of wave-

guide mode at r0.
Now we consider the calculation of waveguide mode coef-

ficients excited by a circularly polarized point source based on
Eq. (1). The right-handed circularly polarized point source can
be expressed as j � jσ � δ�r − r0�pσ , where pσ � x � zi, with
x and z being unit vectors along the x and z directions, respec-
tively. jσ can be decomposed into a superposition of two linearly
polarized point sources jx � δ�r − r0�x and jz � δ�r − r0�z
with orthogonal polarization directions and a phase difference
of π∕2, i.e., jσ � jx � jz i. In the following discussion, it is as-
sumed that the coupling structure is symmetric with respect to
the z � z0 plane where the source is located (as sketched in
Fig. 1). According to the symmetry of the electromagnetic field
[73], it can be concluded that the coefficients of the mth for-
ward- and backward-propagating waveguide modes excited by
jx are equal, which are denoted by β⊥m; while those excited by jz
are opposite, which are denoted by βjjm and −βjjm, respectively.
According to the principle of linear superposition of the electro-
magnetic field,

β�,m � β⊥m � iβjjm � E coupling
x,−,m �r0� � iE coupling

z,−,m �r0�
hψ−,mjψ�,mi

, (3a)

β−,m � β⊥m − iβjjm � E coupling
x,�,m �r0� � iE coupling

z,�,m �r0�
hψ−,mjψ�,mi

, (3b)

where the second equalities are obtained with the use of Eq. (1),
and the subscripts x and z denote the x and z components
of the electric field vector E. The second equalities of Eq. (3)
further yield

E coupling
x,−,m �r0� � E coupling

x,�,m �r0�, − E coupling
z,−,m �r0� � E coupling

z,�,m �r0�:
(4)

Note that Eq. (4) can be also consistently derived from the sym-
metry of the electromagnetic fields excited by the forward- and
backward-propagating waveguide modes.

Next, based on Eq. (3), it is possible to explicitly demon-
strate the conditions for the occurrence of chiral coupling be-
tween the circularly polarized point source and waveguide
modes. Equation (3) indicates that if

E coupling
x,−,m �r0� � −iE coupling

z,−,m �r0�⇔E coupling
x,�,m �r0� � iE coupling

z,�,m �r0�,
(5)

i.e., the T-spin of Ecoupling
−,m �r0� is consistent with the spin of jσ

(right-handed circular polarization), or equivalently, the T-spin
of Ecoupling

�,m �r0� is contrary to the spin of jσ, there will be
β�,m � 0 and β−,m ≠ 0, which means the occurrence of chiral
coupling that only ψ−,m is excited by jσ. Similarly, if

E coupling
x,�,m �r0� � −iE coupling

z,�,m �r0�⇔E coupling
x,−,m �r0� � iE coupling

z,−,m �r0�,
(6)

i.e., the T-spin of Ecoupling
�,m �r0� is consistent with the spin of jσ,

or equivalently, the T-spin of Ecoupling
−,m �r0� is contrary to the

spin of jσ, there will be β−,m � 0 and β�,m ≠ 0, which means
the occurrence of chiral coupling that only ψ�,m is excited
by jσ.

Fig. 1. Schematic diagram of the indirect chiral coupling, with the
resonator as a coupling interface between a point source and a wave-
guide. (a) Original problem under excitation by a point source at r0,
with β�,m and β−,m denoting the coefficients of the excited normalized
mth waveguide modes ψ�,m and ψ−,m propagating in positive and neg-
ative z directions, respectively. (b) Reciprocal problem under excitation
by the ψ�,m and ψ−,m with unitary coefficient, with Ecoupling

�,m �r0� or
Ecoupling
−,m �r0� denoting the excited electric field at r0, respectively.

For the example of the system sketched in the figure, the source is
right-handed circularly polarized (as sketched by the arrowed circle),
and the structure is symmetric with respect to the z � z0 plane where
the source is located. In the following figures, the ψ�,m and ψ−,m are
omitted for simplicity, with only the coefficients β� being labeled.
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The above analysis shows that there exists a locking effect
between the propagation direction (momentum) of the wave-
guide mode ψ�,m and the transverse circular polarization
(T-spin) of the electric field Ecoupling

�,m �r0� excited by ψ�,m [as
shown in Eqs. (5) and (6)]. Accordingly, based on Eq. (3) de-
rived from the reciprocity theorem, there will exist a locking
effect between the circular polarization (spin) of the chiral
source jσ and the propagation direction (momentum) of the
waveguide mode excited by jσ.

Based on the above analysis, we will further derive some
novel general relations between the directivity of the excited
waveguide mode and the T-spin of the field or point source,
as stated in the following.

A directivity factor g of the excited waveguide mode ψ�,m
can be defined as g � �jβ�,mj2 − jβ−,mj2�∕�jβ�,mj2 � jβ−,mj2�,
where g � 1 or −1 means a perfect unidirectional excitation
of ψ�,m or ψ−,m, respectively. The T-spin of Ecoupling

�,m �r0�
can be described by the Stokes parameter [5,7,44,57],

S3�r0� � −2 Im�E coupling
x,�,m �r0�E coupling

z,�,m �r0�	�
jE coupling

x,�,m �r0�j2�jE coupling
z,�,m �r0�j2

, where S3�r0� � −1, 0, 1

correspond to left-handed, null, and right-handed T-spin of
Ecoupling
�,m �r0�, respectively. Then from Eqs. (3) and (4), which

are derived under the two assumptions that the point source
is right-handed circularly polarized and that the coupling struc-
ture is symmetric with respect to the z � z0 plane, it can
be proved that the g defined for the original problem and S3
defined for the reciprocal problem satisfy a general relation
(see Appendix A.2):

g � S3�r0�: (7)

Equation (7) can be regarded as a generalization of Eqs. (5)
and (6) for the special cases of g � −1 and 1 to the general
case of −1 ≤ g ≤ 1.

Furthermore, we consider a point source j � δ�r − r0�p
with an arbitrary polarization, i.e., p � pxx � pzz, and assume
that the coupling structure is designed to satisfy Eq. (6),
i.e., S3�r0� � 1. Then substituting p � pxx � pzz into Eq. (1)
and using Eqs. (4) and (6), one can derive another general
relation (see Appendix A.3):

g � −2 Im�pxp	z �
jpx j2 � jpz j2

: (8)

The right side of Eq. (8) is defined as the S3 parameter of
the point source, denoted by S3,source: S3,source � −1, 0, 1 cor-
respond to left-handed circularly polarized, linearly polarized,
and right-handed circularly polarized point sources, respec-
tively, and according to Eq. (8), will lead to a unidirectional
excitation of ψ−,m, a bidirectional excitation of both ψ−,m
and ψ�,m, and a unidirectional excitation of ψ�,m, respectively.

Note that for Eq. (7), a change of S3�r0� or g implies a
change of the coupling structure while the polarization of
the point source remains unchanged to be right-handed circular
polarization. For Eq. (8), differently, a change of S3,source or g
implies a change of the polarization of the source while the cou-
pling structure remains unchanged. Therefore, the significance
of Eq. (7) is that it provides a general tool for designing the
structure [through designing the S3�r0�] to achieve the desired
chiral coupling (g); while the significance of Eq. (8) lies in the

fact that it explicitly demonstrates the feasibility to read out the
static qubit of the source (S3,source) by measuring the flying
qubit of photons (g) [1,46].

Here we emphasize that the above proposed theories are
generally applicable to any direct/indirect chiral-coupling sys-
tems (i.e., waveguide without/with additional coupling struc-
tures that may support resonant modes) and to any lossless/
lossy waveguide modes (i.e., propagation constants being
real/complex), and can be readily extended to z-periodic wave-
guides [72] such as the photonic crystal waveguides widely used
for the chiral coupling [36–43]. The WME-GF with a
complex-conjugate form commonly used in the literature
[10,11,36–38,44,64,65] can be regarded as a special case of
our theories for direct chiral-coupling systems and lossless
waveguide modes. To see the point, in Appendix A.1, we pro-
vide a derivation of a general WME-GF for lossy waveguide
modes based on the QNM expansion formalism [68–71],
which explicitly shows how the general WME-GF reduces
to the complex-conjugate WME-GF for lossless waveguide
modes. A numerical example (Fig. 8 in Appendix A.1) is pro-
vided to show the higher accuracy of the general WME-GF
compared with the complex-conjugate WME-GF for lossy
waveguide modes. This derivation can be regarded as an exten-
sion of the derivation of the complex-conjugate WME-GF in
the literature (see Eq. (22) in Ref. [65] or Eq. (47) in Ref. [64],
for instance) based on the normal-mode expansion formalism.
Furthermore, the derived general WME-GF is consistent with
our theories derived from the reciprocity theorem, and thus
provides a logic cross-check of our theories.

3. FABRY–PEROT RESONANCE AS A FLEXIBLE
CHIRAL-COUPLING INTERFACE

A. Proposal of the Indirect Chiral-Coupling System
Based on Eqs. (5) and (6) [or, the general relation of Eq. (7)],
we then design an indirect chiral-coupling system mediated by
an FP resonance of dual SPP modes on the platform of an SPP
nanowire waveguide. As shown in Fig. 2(a), the system consists
of three parts: a nanowire SPP waveguide, a single-wire antenna
(SA), and a double-wire antenna (DA). A circularly polarized
point source is located in the gap between the SA and the right
terminal of the DA. The material of the structure is gold, with
wavelength-dependent refractive index nm taking tabulated
values from Ref. [74]. For the emission wavelength
λ � 750 nm of the source which is considered throughout this
paper, there is nm � 0.1681� 4.584i. The structure is in the
air environment without a substrate to simplify the analysis. All
the cross sections of nanowires are square with a side length of
D � 40 nm. The widths of the air gap in the DA and of the
gap between the SA and the right terminal of the DA are all
G � 20 nm. Note that high-definition ultrasmooth gold
nanostructures such as nanowires with widths and gaps down
to tens of nanometers are achievable experimentally [75].

Because the size of the cross sections of the nanowires is
much smaller than the wavelength, only the fundamental
SPP modes of the waveguide, SA, and DA, are bounded (field
decaying to null at infinity in transversal directions) and propa-
gative (propagation constant being almost real). For the
designed system, only the bounded and propagative SPP modes
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are needed to be considered. The reason is that with regard to
the formation of the chiral field at the position of the source,
the contributions of other unbounded or evanescent modes can
be neglected, which can be quantitatively verified by the SPP
models built up later. The waveguide and the SA only support
one fundamental SPP mode, whose electric field distribution is
shown in Fig. 2(b1). While the DA supports two fundamental
SPP modes, whose electric-field vectors are mirror antisymmet-
ric and symmetric with respect to z � 0 plane [the coordinate
system shown in Fig. 2(a)], as shown in Figs. 2(b2) and 2(b3),
respectively.

From Figs. 2(b2) and 2(b3), one can see that the antisym-
metric and symmetric SPPs provide dominant electric-field
components Ez and Ex in the gap of the DA, respectively,
which are the very two field components to excite the T-spin
of the field at the position of the source [see the right side of
Eq. (3)]. The incident fundamental SPP mode on the
waveguide will excite the antisymmetric and symmetric SPPs
on the DA simultaneously. However, compared with the

antisymmetric SPP, the FP resonance of the symmetric SPP
on the DA is weaker because of the weaker confinement of
the field, which results in a weaker Ex than Ez . To overcome
this difficulty, we put the SA close to the right terminal of the
DA. Thus, when the SA is at an FP resonance, the Ex in the gap
between the DA and the SA will be enhanced significantly, so
that a chiral electric field can be constructed. Here, the length
of the SA is set as LSA � 370 nm, making the SA at a lower
order of FP resonance (for which the LSA is smaller and the
resonance is stronger). The calculation process to determine
the LSA is provided in Appendix B.1.

Figure 2(c) shows that for specific lengths of the DA, an
incident forward-propagating SPP on the waveguide can excite
the FP resonances of both the DA and the SA [the field dis-
tribution at the FP resonance of the SA is shown in Fig. 9(b) of
Appendix B.1], which results in an enhanced electric field in
the gap between the DA and the SA. Therefore, it is expected
that if a circularly polarized source is placed in the gap between
the DA and the SA [as shown by the red dot in Fig. 2(a)], an
indirect chiral coupling between the source and the SPP on the
waveguide is likely to be achieved. A detailed analysis will be
provided in the next subsection.

B. Analysis of the Chiral Coupling based on an SPP
Model for the Reciprocal Problem
For the proposed chiral-coupling system, we will build up an
SPP model for the reciprocal problem in which an incident
SPP waveguide mode is considered based on Eq. (3), so as to
provide a quantitative analysis of the physical mechanism of
the chiral coupling. The model is based on a multiple-scattering
process of the fundamental SPPs on the DA, in which other non-
bounded or non-propagative higher-order modes are neglected,
and can provide analytical expressions of the coefficients of the
SPP on the waveguide excited by a circularly polarized source. All
the parameters in the model are obtained with the first-principles
calculations without fitting the numerical results or experimental
data, which ensures a solid electromagnetic foundation and thus
a quantitative prediction of the model.

According to Eq. (3), for the calculation of the coefficients
β� and β− of the forward and backward fundamental SPPs on
the waveguide excited by a circularly polarized source [as shown
in Fig. 2(a)], the corresponding reciprocal problems are for the
calculation of the electric field at the position of the source ex-
cited by an incident backward or forward fundamental SPP on
the waveguide, respectively. The incident forward/up-going
SPP from the bottom of the waveguide will excite the right-
going and left-going symmetric (antisymmetric) SPPs on the
DA with coefficients asym� and bsym� (aasym� and basym� ), respec-
tively, as shown in Fig. 3(a1). Here all the SPPs with unitary
coefficients satisfy the normalizations (on the cross sections
where the SPPs begin to propagate) as specified in Fig. 2(b).
To determine the SPPs’ coefficients, a set of coupled-SPP equa-
tions can be written:

asym� � αsym� � bsym� usymrsymb , (9a)

bsym� � asym� usymrsyma , (9b)

aasym� � αasym� � basym� uasymrasymb , (9c)

Fig. 2. Indirect chiral-coupling system between a chiral point source
and the SPP waveguide mode mediated by an FP nanocavity.
(a) Sketch of system. The circularly polarized point source (shown
by the red dot) is located in the air gap between the SA and the right
terminal of the DA. The coordinate origin O is set at the inner
center of the waveguide. (b) Electric field of the fundamental
SPP modes, calculated with the fully vectorial a-FMM. (b1)
Distribution (in the x−y plane) of the electric-field modulus

jEj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jEx j2 � jEyj2 � jEz j2

q
of the fundamental SPP mode on

the waveguide and SA, which satisfies the normalization of Ez � 1
at the center of the waveguide and has a complex effective index of
neff � 1.700� 0.05136i. (b2) Distribution (in the y−z plane) of
the electric-field z component modulus |Ez | of the fundamental anti-
symmetric SPP mode on the DA, which satisfies the normalization of
Ez � 1 at the center of the DA and has a complex effective index of
nasymeff � 2.423� 0.07471i. (b3) Distribution of jEx j of the funda-
mental symmetric SPP mode on the DA, which satisfies the normali-
zation of Ex � 1 at the center of the DA and has a complex effective
index of nsymeff � 1.475� 0.03732i. (c) Distribution (in the plane
y � 0) of jEj2 excited by the normalized up-going fundamental
SPP on the waveguide (shown by the red arrow). The length of
the DA is L � 200 nm and the results are obtained with the
a-FMM. The superimposed dotted lines in (b) and (c) represent
the boundaries of structures.
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basym� � aasym� uasymrasyma , (9d)

where usym � exp�ik0nsymeff L� and uasym � exp�ik0nasymeff L� are
the phase-shift factors of the symmetric and antisymmetric
SPPs accumulated over the DA, respectively, with k0 � 2π∕λ
being the wavenumber in vacuum, L being the length of the
DA, and nsymeff and nasymeff being the complex effective indices of
the symmetric and antisymmetric SPPs, respectively, which are
obtained with a fully vectorial aperiodic Fourier modal method
(a-FMM) [76,77]. αsym� (αasym� ) is the coefficient of the right-
going symmetric (antisymmetric) SPP on a semi-infinite DA
excited by the up-going SPP on the waveguide, as shown in
Fig. 3(a2). rsyma (rasyma ) is the reflection coefficient of a right-
going incident symmetric (antisymmetric) SPP at the right ter-
minal of a semi-infinite DA coupled with the SA, as shown in
Fig. 3(a3). rsymb (rasymb ) is the reflection coefficient of a left-going
incident symmetric (antisymmetric) SPP at the left terminal of
a semi-infinite DA coupled with the waveguide, as shown in
Fig. 3(a4). Since the symmetric and antisymmetric SPPs on the
DA cannot excite each other, Eqs. (9a), (9b) and Eqs. (9c), (9d)

are decoupled and can be solved independently. Here rsym=asym
a

and rsym=asym
b can be calculated as the scattering matrix elements

[78] with the fully vectorial a-FMM. αsym=asym
� can be calculated

with the mode orthogonality theorem [73,79]:

asym=asym
� � hψ sym=asym

− jψ�,totali
hψ sym=asym

− jψ sym=asym
� i

, (10)

where ψ�,total is the total electromagnetic field in the structure as
shown in Fig. 3(a2) excited by the up-going SPP on the wave-
guide, ψ sym

� and ψasym
� (ψ sym

− and ψasym
− ) are the electromagnetic

field of the right-going (left-going) symmetric and antisymmetric
fundamental SPP modes on the DA, respectively. ψ�,total and
ψ sym=asym

�∕− are all calculated with the a-FMM. The definition
of the bilinear function hψ1jψ2i is given by Eq. (2), with a
replacement zdxdy → xdydz and the integral plane selected
to be any cross section x � x1 of the DA.

Equation (9) can be understood intuitively. For Eqs. (9a)
and (9c), the coefficient asym=asym

� of the right-going SPP on the
DA results from two contributions: the first one (αsym=asym

� ) is
from the direct coupling of the up-going SPP on the wave-
guide; the second one is from the reflection (rsym=asym

b ) of the
damped (usym=asym) left-going SPP (with coefficient bsym=asym

� ) at
the left terminal of the DA coupled with the waveguide.
Equations (9b) and (9d) can be understood in a similar way.
Solving Eq. (9), one can obtain

a� � α�
1 − u2rarb

, (11a)

b� � α�ura
1 − u2rarb

, (11b)

where the superscripts “sym” and “asym” are omitted since asym�
and aasym� (bsym� and basym� ) have exactly the same form of expres-
sion. For the case of an incident backward/down-going SPP
from the top of the waveguide, the coefficients of the excited
right-going and left-going symmetric (antisymmetric) SPPs on
the DA are denoted by asym− and bsym− (aasym− and basym− ), respec-
tively, as shown in Fig. 3(a1). The coefficient of the right-going
symmetric (antisymmetric) SPP on the semi-infinite DA ex-
cited by the down-going SPP on the waveguide is denoted
by αsym− (αasym− ), as shown in Fig. 3(a2). Fully parallel to
Eq. (11), through building up an SPP model, one can obtain

a− �
α−

1 − u2rarb
, (12a)

b− �
α−ura

1 − u2rarb
, (12b)

where the superscripts “sym” and “asym” are omitted as well.
The electromagnetic field in the coupling region between

the SA and the right terminal of the DA excited by an incident
up-going or down-going SPP on the waveguide can be respec-
tively expressed as

ψcoupling
� �r� � asym� usymψ sym

R �r� � aasym� uasymψasym
R �r�, (13a)

ψcoupling
− �r� � asym− usymψ sym

R �r� � aasym− uasymψasym
R �r�, (13b)

where ψ sym
R (ψasym

R ) represents the field in the coupling region
excited by the right-going symmetric (antisymmetric) SPP on

Fig. 3. Definitions of the SPP scattering coefficients and the un-
known SPP mode coefficients in the SPP model. The superscripts
“sym” and “asym,” which correspond to the symmetric and antisym-
metric SPPs on the DA, respectively, are omitted in the figure. (a) SPP
model for the reciprocal problem. (a1) Unknown SPP mode coeffi-
cients a� and b� to be solved in the model. (a2)–(a4) Definitions
of SPP scattering coefficients α�, ra, and rb, and definition of the cou-
pling field ψR . In (a1) and (a2), the blue and red arrows or coefficients
correspond to the incident SPPs on the upper and lower waveguide
arms, respectively. (b) SPP model for the original problem (red dot
representing the point source). (b1) Unknown SPP mode coefficients
as , bs , β�, and β− to be solved in the model. (b2) Definitions of SPP
excitation coefficient γ and field ψ source excited by the point source.
(b3) Definition of SPP coupling coefficients χ�.
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the DA with unitary coefficient [as shown in Fig. 3(a3)], and
can be calculated with the fully vectorial a-FMM. To achieve
the chiral coupling, a circularly polarized point source is placed
in the gap between the DA and the SA, with coordinate
r0 � �D∕2� L� Δx, 0, 0� andΔx to be determined hereafter
[see the coordinate in Fig. 2(a)]. Substituting Eq. (13) into
Eq. (3), one can obtain the coefficients of the up-going and
down-going SPPs excited by the circularly polarized point
source:

β� � asym− usymE sym
x,R �r0� � iaasym− uasymE asym

z,R �r0�
hψ−jψ�i

, (14a)

β− �
asym� usymE sym

x,R �r0� � iaasym� uasymE asym
z,R �r0�

hψ−jψ�i
, (14b)

where ψ� and ψ− represent the up-going and down-going fun-
damental SPP modes on the waveguide, respectively, E sym

x,R is the
x component of the electric field of ψ sym

R , and E asym
z,R is the z

component of the electric field of ψasym
R . In Eq. (14), the sym-

metry of the structure with respect to the z � 0 plane yields

asym� � asym− � asym, aasym� � −aasym− � aasym, (15)

which is consistent with Eq. (4). Equation (14) indicates that
the two SPPs with different symmetries on the DA provide
two regulable coefficients asymusym and aasymuasym for the two
orthogonal electric-field components E sym

x,R �r0� and E asym
z,R �r0�

that constitute the T-spin, respectively. Specifically, Eqs. (11a)
and (12a) show that asymusym and aasymuasym can be regulated by
changing the length L of the DA [via the phase shift factor
usym=asym � exp�ik0nsym=asym

eff L�], which allows the possibility
to form a T-spin field for an incident SPP, or reciprocally,
the chiral coupling of the SPP, as to be shown in Fig. 4.

After obtaining β�, one can then calculate ΓSPP,� and
ΓSPP,−, the coupling rates of the up-going and down-going
SPPs on the waveguide excited by the point source, which are
expressed as ΓSPP,� � jβ�j2

RR
z�z0

1
2Re�E� ×H	

�� · ��z�dxdy,
with z � z0 being the cross section of the waveguide where
the SPP begins to propagate. The curves of ΓSPP,� as functions
of the length L of the DA are shown in Fig. 4(a1), with ΓSPP,�
normalized by Γair, the spontaneous emission rate of the cir-
cularly polarized point source jσ in air. Γair � ηvack20na∕�6π�
with ηvac being the wave impedance in vacuum, and na � 1
being the refractive index of air. In the calculation, the
source is located at r0 � �D∕2� L� 7 nm, 0, 0�. Note that

Fig. 4. Calculation results of the indirect chiral coupling. (a1) Coupling rates ΓSPP,� of up-going and down-going SPPs on the waveguide excited
by a right-handed circularly polarized point source plotted as functions of the length L of the DA, normalized by the emission rate Γair of the source
in air. The solid curves and the circles represent the results obtained with the SPP model for the reciprocal problem [Eq. (14)] and the fully vectorial
a-FMM, respectively. The blue and red curves correspond to the up-going and down-going SPPs on the waveguide, respectively. The point source is
located at r0 � �D∕2� L� 7 nm, 0, 0). (a2), (a3) Moduli jaasymj and jasymj of the coefficients of the right-going antisymmetric and symmetric
SPPs on the DA excited by the up-going (or down-going) SPP on the waveguide, which are obtained with the model Eq. (11a) [or Eq. (12a)].
(b) Phase difference φ of the two orthogonal components of the electric field at the position of the point source. The field is excited by an incident
up-going SPP on the waveguide and is obtained with the model Eq. (17). (c) Directivity factor g obtained with the a-FMM (circles) and the SPP
model (solid curve), respectively. In (a)–(c), the green vertical dashed lines from left to right correspond to n � 0–6 in Eq. (16). (d) Distribution (in
y � 0 plane) of S3 of the electric field in the coupling region between the DA and the SA. The field is excited by an incident up-going SPP on the
waveguide and is obtained with the model Eq. (13a). (e) Distribution (in y � 0 plane) of the normalized electric-field intensity �jEj∕Γair�2 excited by
the right-handed circularly polarized point source at r0. The result is obtained with the FEM. In (d) and (e), the length of DA is L � 185, 342,
500 nm from left to right, corresponding to n � 1, 2, 3 in (a), respectively.
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a localization accuracy of a single quantum-dot emitter better
than 2 nm has been achieved experimentally [80]. In Fig. 4(a),
the results obtained with the fully vectorial a-FMM and SPP
model [Eq. (14)] are shown with circles and solid curves, re-
spectively. Good agreement can be observed between the two
results, which confirms the validity of the model. Here the cal-
culation of the β� with the a-FMM is the same as Eq. (10): the
total field excited by the source is calculated with the a-FMM
first, and then the β� are extracted from the total field with the
mode orthogonality theorem [73,79].

Figure 4(a1) shows that for some specific values of L (at the
green vertical dashed lines of n � 0, 1, 3 in the figure), one of
ΓSPP,� and ΓSPP,− reaches the peak value and obtains significant
enhancement (ΓSPP,�∕Γair ≫ 1), while the other is almost zero.
This means the occurrence of perfect chiral coupling of the
SPP waveguide mode, and the corresponding L are called per-
fect chiral points (PCPs) here. In addition, without changing
the chirality of the source, the unidirectional excitation of
the SPP on the waveguide can be reversed in direction (be-
tween n � 0, 1 and n � 3) or disappear (at n � 2) simply by
changing L. The L corresponding to the latter are called perfect
non-chiral points (PNCPs). At the PCPs of n � 0, 1, 3, the
footprints of the coupling structure are L� G � D � 102,
245, 560 nm in the x direction, respectively, and are all
LSA � 370 nm in the z direction, which are much smaller than
the footprints (from several to more than 100 μm) of the
dielectric whispering-gallery microcavities with chiral-coupling
structures [32,34,50,63].

To explain the above numerical phenomena, Figs. 4(a2) and
4(a3) respectively show the moduli of the coefficients of the
antisymmetric and symmetric SPPs on the DA, jaasymj and
jasymj, which are given by model Eq. (11a) or (12a). The results
reveal that the PCPs and PNCPs shown in Fig. 4(a1) almost
exactly correspond to the different orders of FP resonance of the
antisymmetric SPP on the DA, which are achieved under the
phase-matching condition,

2k0Re�nasymneff �L� arg�rasyma � � arg�rasymb � � 2nπ: (16)

Equation (16) is obtained by minimizing the denominator in
Eq. (11a) or (12a) for aasym, and resultantly, maximizing jaasymj
[see Fig. 4(a2)]. In Eq. (16), Re(·) denotes the real part, arg(·)
denotes the argument, and n is an integer corresponding to dif-
ferent orders of resonance [shown by the green vertical dashed
lines in Figs. 4(a)–4(c)]. Equation (16) can be understood in-
tuitively as follows: the phase change accumulated by the anti-
symmetric SPP that propagates back and forth over one round
on the DA is multiples of 2π, which obviously results in a con-
structive interference of the multiple-scattered SPPs and thus
forms the FP resonance.

To analyze the impact of the FP resonance on the chirality
of the electric field at the position of the source, Eq. (13) gives
that the two orthogonal components of the electric field excited
by the incident SPP on the waveguide are

E coupling
x,� �r0��E coupling

x,− �r0��E coupling
x �r0�� asymusymE sym

x,R �r0�,
(17a)

E coupling
z,� �r0� � −E coupling

z,− �r0� � E coupling
z �r0�

� aasymuasymE asym
z,R �r0�: (17b)

For the symmetric SPP on the DA, Fig. 4(a3) shows that the
value of jasymj is smaller with a weak fluctuation compared to
jaasymj at resonance as the length L of the DA varies, which
implies a weaker FP resonance of the symmetric SPP than that
of the antisymmetric SPP. However, since the SA at a specific
FP resonance is placed near the right terminal of the DA, the
value of jE sym

x,R �r0�j is larger than that of jE asym
z,R �r0�j [E sym

x,R �r0� �
3.9838–11.358i and E asym

z,R �r0� � 1.3206–5.3317i], which
thus compensates for the smaller value of jasymj than that
of jaasymj at resonance, so that the relation jE coupling

x �r0�j ≈
jE coupling

z �r0�j can be achieved under the phase-matching con-
dition of Eq. (16). The above analysis confirms the expectation
of using the DA and SA to respectively enhance the Ez and Ex
components at the source position in the gap between the DA
and the SA as stated in Section 3.A.

Next, we check the phase difference φ � arg�E coupling
z �r0�∕

E coupling
x �r0�� of the two orthogonal components of the electric

field at the position of the source under the phase-matching
condition. Figure 4(b) shows the φ as a function of L for
an incident up-going SPP on the waveguide. Corresponding
to n � 0, 1, 2, 3 in Eq. (16), there are φ ≈ π∕2, π∕2, 0,
−π∕2, i.e., the right-handed, right-handed, null, and left-
handed T-spins of the electric field are excited at r0, respec-
tively. Accordingly, for the original problem, if a right-handed
circularly polarized source is placed at r0 with L taking values
corresponding to n � 0, 1, 2, 3 in Eq. (16), the forward, for-
ward, bidirectional, and backward SPP will be launched on the
waveguide, respectively.

To quantitatively describe the directional excitation of the
up-going or down-going SPP on the waveguide by the chiral
source, Fig. 4(c) shows the dependence of the directivity factor
g on L. For the L given by Eq. (16) with n � 0, 1, 2, 3, there
are g � 0.842, 0.999, 0.0510, −0.892, respectively. In addi-
tion, g can take values continuously over almost the whole
range of [−1, 1] simply by changing L (instead of changing
the chirality of the source [29,37,44–46,48] or putting the
source on the other side of the waveguide [57,59]), which pro-
vides flexible freedoms for the design of chiral-coupling devices.
Note that the poorer negative value of g � −0.892 at n � 3
than the positive value of g � 0.999 at n � 1 can be further
improved by adjusting the excitation and structural parameters
with the aid of Eq. (7) and the SPP model. For instance, if the
point source is moved from r0 � �D∕2� L� 7 nm, 0, 0� to
r0 � �D∕2� L� 5 nm, 0, 0�, g at n � 3 can be improved to
be −0.964, with a moderate decrease of g at n � 1 to 0.959.

Next we will provide a direct numerical observation for the
formation of the chiral/non-chiral light field in the reciprocal
problem, and for the unidirectional/bidirectional excitation of
the SPP on the waveguide in the original problem, as predicted
by the SPP model above. For the reciprocal problem, we cal-
culate the spatial distribution of the Stokes parameter S3 de-
fined before Eq. (7) under the excitation of an up-going
SPP on the waveguide. The results are obtained with the model
[Eq. (13a)] and are shown in Fig. 4(d). It can be seen that for
L � 185, 342, 500 nm (corresponding to n � 1, 2, 3), right-
handed circularly polarized, linearly polarized, and left-handed
circularly polarized electric fields at r0 [corresponding to
S3�r0� � 0.999, 0.0151, −0.897] are excited by the up-going
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SPP on the waveguide, respectively. For the original problem, a
right-handed circularly polarized source is placed at r0 and L
also takes the above three values. The distributions of the ex-
cited electric field are calculated with the finite element method
(FEM) executed with the software of COMSOL Multiphysics.
As shown in Fig. 4(e), the results manifest that for these three
values of L, forward, bidirectional, and backward SPPs (corre-
sponding to g � 0.999, 0.0510, −0.892 obtained with the
a-FMM) are excited on the waveguide, respectively. These re-
sults confirm the prediction of the SPP model and also the
validity of the general relation Eq. (7) [note that the slight dif-
ference between S3�r0� and g is due to the slight error of the
SPP model relative to the a-FMM calculation].

In addition, Fig. 4(e) shows that the SA is excited to the
designed FP resonance [see Fig. 9(b) in Appendix B.1], which
enhances the electric-field component Ex in the gap between
the DA and the SA, and thus meets the requirement for a chiral
coupling as described in a previous subsection. Meanwhile,
one can observe a standing wave formed by the two counter-
propagating antisymmetric SPPs on the DA at FP resonance,
and the number of nodes of field increases with the increase
of L.

The general relation of Eq. (8) predicts that if the coupling
structure is designed to satisfy S3�r0� � 1 (i.e., to achieve a
perfect chiral coupling), the polarization of the excitation
source (S3,source) will be directly related to the directivity of
the excited SPP (g), thus demonstrating the feasibility to read
out the static qubit of the source (S3,source) by measuring the
flying qubit of photons (g) [1,46]. To confirm this prediction,
we fix the structure with L � 185 nm [corresponding to n � 1
in Eq. (16)], for which there is S3�r0� � 0.999, and check the
excitation of the SPP waveguide mode by a point source of
various polarizations. Figure 4(e) with n � 1 and Fig. 5(a)
show that the direction of the excited SPP will be reversed
if the source is changed from right-handed to left-handed cir-
cular polarization. Figures 5(b)–5(d) show that the exci-
tation of the SPP becomes bidirectional if the source is of
linear or elliptical polarization. More specifically, there are
ΓSPP,�∕Γair �ΓSPP,−∕Γair� � 40.36 �0.01268�, 0.01268 �40.36�,
20.46 �20.46�, 30.51 �10.33�, 10.33 �30.51�, and g � 0.999,
−0.999, 0.00768, 0.494, −0.494 (obtained with the a-FMM)
for Fig. 4(e) with n � 1 and Figs. 5(a)–5(d), for which
S3,source � 1, −1, 0, 0.5, −0.5, respectively. Therefore, the pre-
diction of the general relation Eq. (8) is confirmed. Note that
the slight difference between g and S3,source is due to the slight
error of S3�r0� relative to 1.

C. Analysis of the Purcell Factor and Chiral-Coupling
Efficiency Based on an SPP Model for the Original
Problem
The enhancement of the spontaneous emission rate is described
by FP � Γtotal∕Γair, called the Purcell factor [81,82], where
Γtotal is the total spontaneous emission rate (proportional to
emission power) of the source in the designed structure. A high
value of FP is important for the realization of an on-chip
ultrafast emission source [83]. For the chiral-coupling system
studied in this paper, higher FP means a faster readout of
spin qubits from the source, that is, a higher conversion rate
from the static qubits of matter to the flying qubits of photons

[66]. For a right-handed circularly polarized electric dipole
source jσ � �x � zi�δ�r − r0�, there is Γtotal � −fRe�Ex�r0�� �
Im�Ez�r0��g∕2, where Ex�r0� and Ez�r0� are respectively the
x and z components of the electric field excited by the source
at r0.

The coupling efficiency of the SPP on the waveguide excited
by the source is defined as η� � ΓSPP,�∕Γtotal [1,64,66,81],
which describes the probability for emitted photons to be chan-
neled into the up-going or down-going SPP waveguide mode
[66]. Improvement of η� is of great significance for improving
the signal intensity of the waveguide mode in the on-chip single
photon source and integrated photonic circuits [1,37].

To analyze the FP and η�, an SPP model can be built up as
well for the original problem [as illustrated in Fig. 3(b) and
detailed in Appendix B.2]. With the model [Eq. (B3) in
Appendix B.2], the total spontaneous emission rate can be
expressed as

Γtotal � −
1

2
Re�Ex,source�r0� � asyms usymE sym

x,R �r0��

−
1

2
Im�Ez,source�r0� � aasyms uasymE asym

z,R �r0��: (18)

Equation (18) shows that the two SPPs with different sym-
metries on the DA provide two regulable coefficients
asyms usym and aasyms uasym for Γtotal, which depend on the length
L of the DA [via the phase shift factor u; see Eq. (B2a) in
Appendix B.2].

In addition, with the SPP model for the original problem,
analytical expression of the coefficient β� of the SPP waveguide
mode excited by the source can be obtained as well; see
Eq. (B4) in Appendix B.2. As expected, with the reciprocity
theorem [72,73] it can be proved that the β� given by the
SPP models for the original problem and the reciprocal prob-
lem [see Eq. (14)] are identical, as shown in Appendix B.2.

Fig. 5. Distribution (in y � 0 plane) of the normalized electric-
field intensity �jEj∕Γair�2 excited by a point source at r0 which is
(a) left-handed circularly polarized, (b) linearly polarized in direction
of 45° from the x axis, (c) right-handed elliptically polarized
[p � x� ffiffiffi

3
p

− 1�∕2� iz� ffiffiffi
3

p � 1�∕2], or (d) left-handed elliptically
polarized [p � x� ffiffiffi

3
p

− 1�∕2 − iz� ffiffiffi
3

p � 1�∕2]. In (a)–(d), the length
of DA is L � 185 nm, corresponding to n � 1 in Eq. (16). The re-
sults are obtained with the FEM.
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The dependence of the Purcell factor FP on the length L of
the DA is shown in Fig. 6(a). The results obtained with the SPP
model [Eq. (18)] are in good agreement with the rigorous
numerical results of the a-FMM, which confirms the validity
of the model. At the PCPs and PNCPs (n � 0, 1, 2, 3) shown
in Fig. 4(a1), FP reaches high peak values of 119, 203, 152,
and 145, respectively, exhibiting a significant enhancement of
the spontaneous emission rate of the chiral source. These high
peak values of FP result from the fact that under the
phase-matching condition of Eq. (16), the coefficient aasyms

of the antisymmetric SPP in Eq. (18) will take a maxi-
mum value.

The results of the coupling efficiency η� of the SPP on the
waveguide are shown in Fig. 6(b). At the PCPs and PNCPs
(n � 0, 1, 2, 3), there are η� � 44% (η− � 4.7%), 25%
(0.028%), 10% (10%), and 0.87% (16%), respectively, exhib-
iting an efficient unidirectional or bidirectional coupling of the
SPP. The values of η� could be further improved by optimizing
the system parameters with the aid of the SPP model,
for instance, to suppress the SPP propagation loss [84] or
non-radiative decay rate [81,85] by optimizing the sizes
and materials of the DA and the SA and their in-between
gaps.

D. Comparative Discussions on the Performance
of the Indirect Chiral-Coupling System
As shown in Appendix B.3, the system without the SA exhibits
a weaker unidirectionality of the excited SPP waveguide mode
[Figs. 10(a1) and 10(b1)]. For a bare SPP waveguide (acting as
a direct chiral-coupling system [57,59]) in comparison with the
proposed indirect chiral-coupling system, the former exhibits
obviously poorer performances, regarding the effective-
coupling distance, the directivity factor g, the coupling effi-
ciency η� of the SPP waveguide mode, and the Purcell factor
FP of the chiral source [Figs. 10(a2), 10(b2), and 11]. These
comparative results show the performance advantages of the
proposed indirect chiral-coupling system.

As shown in Appendix B.4 (Fig. 12), the performances
of the proposed indirect chiral-coupling system can be
largely preserved after adding a substrate and considering the
actual location of a quantum-dot emitter on the substrate
[37,39,44–46,48,64]. This exhibits the robustness of perfor-
mances and feasibility of an experimental demonstration for
the proposed indirect chiral-coupling system with practical
configurations.

4. CONCLUSION

We propose a general approach based on the reciprocity theo-
rem for an intuitive analysis and rigorous calculation of the cou-
pling coefficient between the chiral source and the waveguide
mode. With this approach, we derive the conditions for the
occurrence of chiral coupling as well as some general relations
between the chiral-coupling directivity (g) and T-spin (S3) of
the field or source.

Based on the theories, a novel indirect chiral-coupling sys-
tem between a chiral emitter and waveguide modes mediated
by FP resonance is proposed, which is on the platform of SPP
with a deep subwavelength scale. Compared with the direct
chiral-coupling system, this system gets rid of the restriction
that the emission source must be in the limited evanescent-field
region of the waveguide mode. As a mediator, the FP resonance
provides flexible freedoms to regulate the chiral coupling, and
can achieve nearly perfect chiral coupling, non-chiral coupling,
and a direction reversal of the chiral coupling without changing
the chirality of the source. In addition, with the assistance of
the FP resonance, high spontaneous-emission-enhancement
Purcell factor of the chiral source and high chiral-coupling
efficiency between the source and the SPP waveguide mode
are obtained, which enables the system to realize a determin-
istic, fast, and efficient readout of the spin qubits in the source.
The proposed chiral-coupling system is expected to be realiz-
able in experiment in view of the current fabrication and testing
capabilities [77,80] and our simulation results for practical
configurations.

To explore the underlying physical mechanism of the indi-
rect chiral-coupling system, two SPP models based on first
principles are built up by considering the excitation and multi-
ple scattering processes of SPPs in the structure. The SPP
model for the reciprocal problem indicates that the T-spin at
the position of the source originates from two SPPs with differ-
ent symmetries supported by the structure, and that an emer-
gence, disappearance, and flip of T-spin can be realized simply

Fig. 6. Purcell factor FP � Γtotal∕Γair of the chiral source and cou-
pling efficiency η� of the SPP waveguide mode. The solid curves
and the circles represent the results obtained with the SPP model
for the original problem and the fully vectorial a-FMM, respectively.
The green vertical dashed lines from left to right correspond to
n � 0–6 in Eq. (16). (a) Results of the Purcell factor Γtotal∕Γair

of a chiral point source of right-handed circular polarization at
r0 � �D∕2� L� 7 nm, 0, 0). (b) Results of the coupling efficiency
η� � ΓSPP,�∕Γtotal of the up-going (blue curve) and down-going (red
curve) SPPs on the waveguide excited by the chiral point source at r0.
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by adjusting the antisymmetric SPP to reach different orders of
FP resonance. The SPP model for the original problem clarifies
that once the antisymmetric SPP is at an FP resonance, the
spontaneous-emission-enhancement Purcell factor will reach
the maximum, and the chiral-coupling efficiency between
the source and the SPP waveguide mode will take a large value.

We expect that our proposed theories will provide general
recipes for an intuitive and quantitative design of various direct/
indirect chiral-coupling systems. Thanks to the FP resonance
with flexible design freedoms and rich implementation plat-
forms (such as SPP platforms [79,86] and photonic-mode di-
electric platforms [87,88]), indirect chiral-coupling systems
with the FP resonance as coupling intermediaries can be further
developed based on the work of this paper to achieve improved
performances and extended applications.

APPENDIX A: SOME GENERAL THEORETICAL
DERIVATIONS ABOUT THE CHIRAL COUPLING
OF AN EMITTER TO WAVEGUIDE MODES

1. Derivation of a General Waveguide-Mode
Expansion of Green’s Function Based on the
Quasinormal Mode Expansion Formalism
In this section, we will provide a derivation of a general WME-
GF for lossy waveguide modes based on the QNM expansion
formalism [68–71]. This derivation will explicitly show how the
general WME-GF reduces to the complex-conjugate WME-GF
commonly used in the literature [10,11,36–38,44,64,65] for
lossless waveguide modes, as mentioned in the main text (the
end of Section 2). Finally, we will provide a numerical example
showing the higher accuracy of the general WME-GF compared
with the complex-conjugate WME-GF for lossy waveguide
modes.

The QNM is a rigorous conceptualization of the resonant
mode commonly referred to in the literature. It is the eigenso-
lution of the source-free Maxwell’s equations and satisfies the
outgoing-wave condition at infinity [68–71]. It corresponds to
a complex-valued eigenfrequency for generally lossy systems
and reduces to the normal mode (NM) with a real-valued ei-
genfrequency for lossless systems [69]. Therefore, our deriva-
tion here can be regarded as an extension of the derivation
of the complex-conjugate WME-GF based on the NM expan-
sion (see Eq. (22) in Ref. [65] or Eq. (47) in Ref. [64], for
instance).

To obtain the Green’s function of a waveguide, we consider
a point source expressed as an electric current density
j � pδ�x − x0�δ�y − y0�δ�z − z0� located at the vicinity of
the waveguide, with the z axis set along the translationally
invariant direction of the waveguide [as illustrated by Fig. 1(a)
in the main text with the resonator removed]. With the Fourier
expansion of the Dirac δ-function,

δ�z − z0� �
1

2π

Z �∞

−∞
exp�ik�z − z0��dk, (A1)

the point source can be expressed as

j�r� � 1

2π

Z �∞

−∞
pδ�x − x0�δ�y − y0� exp�ik�z − z0��dk: (A2)

Equation (A2) shows that the point source j an be expressed as a

superposition of infinite number of line current sources
j 0�r, k� � 1

2π pδ�x − x0�δ�y − y0� exp�ik�z − z0��, which is lo-
cated at (x0, y0) and has a definite wave vector k along the
z direction.

In the following, we will apply the QNM expansion formal-
ism to obtain the electric field E 0 excited by j 0, and a superpo-
sition of E 0 with various k then gives the electric field E excited
by j. For this purpose, the electric field of the mth QNM with
the wave vector k on the waveguide can be expressed as

Em�r, k� � Em�ρ, k� exp�ikz�, (A3)

where r � �x, y, z� and ρ � �x, y, 0�. According to the QNM-
expansion formalism [68–71] for a waveguide of generally lossy
and dispersive reciprocal materials, E 0 excited by j 0 can be ex-
panded onto the basis of the QNMs as

E 0�r, r0, k� �
X∞
m�1

Cm�r0, k�Em�ρ, k� exp�ikz�, (A4)

where the expansion coefficients are expressed as

Cm�r0, k� �
p · Em�ρ0, − k� exp�−ikz0�
2πi�ω − ωm�k��Pm�k�

, (A5)

with r0 � �x0, y0, z0�, ρ0 � �x0, y0, 0�, ω denoting the real-
valued excitation angular frequency, ωm�k� denoting the com-
plex-valued eigenfrequency of the QNM, and a pseudoenergy
of the QNM expressed as

Pm�k� �
ZZ �∞

−∞
dxdy

�
Em�ρ, k� ·

∂�ωε�ω��
∂ω

jω�ωm
· Em�ρ, − k�

−Hm�ρ, k� ·
∂�ωμ�ω��

∂ω
jω�ωm

·Hm�ρ, − k�
�
: (A6)

In Eq. (A6), ε and μ represent the permittivity and permeability
tensors of the waveguide material, respectively, and satisfy
εT � ε and μT � μ for reciprocal materials. According to
Eq. (A2), the electric field excited by j is then expressed as

E�r, r0� �
Z �∞

−∞
E 0�r, r0, k�dk: (A7)

Substituting Eq. (A5) into Eq. (A4) and then into Eq. (A7), one
can obtain

E�r, r0� �
X∞
m�1

Z �∞

−∞
f �k�dk, (A8)

with

f �k� � exp�ik�z − z0��
2πi�ω − ωm�k��Pm�k�

p · Em�ρ0, − k�Em�ρ, k�: (A9)

Now we consider the calculation of the integralR�∞
−∞ f �k�dk in Eq. (A8), which will be performed with the
residue theorem [89]. For this purpose, we first analyze the
poles of the integrand f �k� in the complex plane of k.
Equation (A9) of f �k� shows that f �k� has first-order complex
poles satisfying ω � ωm�k�, which can be equivalently ex-
pressed as k � �km�ω� with Re�km� > 0 and Im�km� > 0, as
shown with the red dots in Fig. 7. Here the k � �km�ω� are
nothing else than the dispersion relations of the propaga-
tion constants of the mth forward (+) and backward (−)

Research Article Vol. 10, No. 4 / April 2022 / Photonics Research 1081



traveling waveguide modes for a given real-valued excitation
frequency ω.

For the case of z − z0 > 0, we construct a closed integral
path as shown in Fig. 7(a), and calculate the integralR�∞
−∞ f �k�dk as

Z �∞

−∞
f �k�dk �

Z �∞

−∞
f �k�dk �

Z
C�

f �k�dk

� 2πi lim
k→km

�k − km�f �k�

� exp�ikm�z − z0��
−vg ,mPm�km�

p · Em�ρ0, − km�Em�ρ, km�:

(A10)

In Eq. (A10), the first equality is due to
R
C� f �k�dk � 0. This

is obtained in view that on the semi-circle C� with an infinite
radius, there is exp�ik�z − z0�� → 0 due to z − z0 > 0,
Im�k� > 0, and jkj → �∞, which then results in an exponen-
tial vanishing of f �k�. The second equality in Eq. (A10) is ob-
tained with the residue theorem [89]. The third equality is
obtained by defining a group velocity vg ,m � dωm�km�

dk of the mth
waveguide mode.

For the case of z − z0 < 0, fully parallel to the calculation
in Eq. (A10), we construct a closed integral path, as shown in
Fig. 7(b), and calculate the integral

R�∞
−∞ f �k�dk as

Z �∞

−∞
f �k�dk �

Z �∞

−∞
f �k�dk �

Z
C−

f �k�dk

� −2πi lim
k→−km

�k � km�f �k�

� exp�−ikm�z − z0��
−vg ,mPm�km�

p · Em�ρ0, km�Em�ρ, − km�,

(A11)

where dωm�−km�
dk � − dωm�km�

dk and Pm�−km� � Pm�km� are used to
obtain the third equality. Substituting Eqs. (A10) and (A11)
into Eq. (A8), one can obtain

E�r, r0� �
X∞
m�1

fΘ�z − z0�A�,mEm�ρ, km� exp�ikm�z − z0��

� Θ�z0 − z�A−,mEm�ρ, − km� exp�−ikm�z − z0��g,
(A12)

where Θ�z − z0� � 1 for z − z0 > 0 and 0 otherwise is the
Heaviside function, and A�,m and A−,m are expressed as

A�,m � p · Em�ρ0, − km�
−vg ,mPm�km�

, A−,m � p · Em�ρ0, km�
−vg ,mPm�km�

:

(A13)

Equation (A12) is the waveguide mode expansion of the electric
field E excited by the point source j, with Em�ρ, km�·
exp�ikmz� and Em�ρ, − km� exp�−ikmz� denoting the electric
fields of the mth forward- and backward-propagating waveguide
modes, respectively, and A�,m exp�−ikmz0� and A−,m exp�ikmz0�
denoting the corresponding excitation coefficients.

To see the relation between Eq. (A13) and Eq. (1) in the
main text, it can be proved that [72]

−vg ,mPm�km� � hψ−,mjψ�,mi, (A14)

where the right side is defined in Eq. (2). For the special case of
direct chiral-coupling systems (i.e., the present case of a wave-
guide without additional coupling structures), the Ecoupling

�,m �r0�
in Eq. (1) become

Ecoupling
−,m �r0� � Em�ρ0, − km� exp�−ikmz0�, (A15a)

Ecoupling
�,m �r0� � Em�ρ0, km� exp�ikmz0�: (A15b)

Inserting Eqs. (A14) and (A15) into Eq. (A13), one can find
that the A�,m exp�−ikmz0� and A−,m exp�ikmz0� exactly become
the β�,m and β−,m in Eq. (1). Therefore, Eq. (A13) provides
a logic cross-check of Eq. (1) in the main text (derived from
the reciprocity theorem) for the special case of direct chiral-
coupling systems.

To obtain the Green’s function, Eq. (A12) with Eq. (A13)
inserted can be rewritten as

E�r, r0� � G�r, r0� · p, (A16)

with the dyadic Green’s function expressed as

G�r, r0� �
X∞
m�1

1

−vg ,mPm�km�
fΘ�z − z0�Em�ρ,km�Em�ρ0, − km�

× exp�ikm�z − z0���Θ�z0 − z�Em�ρ, − km�Em�ρ0,km�
× exp�−ikm�z − z0��g: (A17)

The WME-GF of Eq. (A17) is generally applicable to a wave-
guide of lossless/lossy materials (permittivity ε and permeability
μ being real/complex) and to propagative/evanescent (propaga-
tion constant km being real/complex) waveguide modes. The
general WME-GF of Eq. (A17) is for a z-invariant waveguide
and can be readily extended to z-periodic waveguides [72] such
as the photonic crystal waveguides widely used for the chiral
coupling [36–38,44].

For the special case of lossless materials and propaga-
tive waveguide modes, the complex-conjugate form of the
Maxwell’s equations yields [72,73]

Fig. 7. Integral path (blue lines) and poles (red dots) of the inte-
grand for the integration in Eq. (A8). (a) and (b) are for the cases
of z − z0 > 0 and z − z0 < 0, respectively. For z − z0 > 0
(z − z0 < 0), the closed integral path is composed of the real axis
and a semi-circle C� (C−) in the upper (lower) complex plane with
an infinite radius R, in which the integrand f �k� has a single first-
order pole of km (−km).
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Em�ρ, − km� � E	
m�ρ, km�: (A18)

Inserting Eq. (A18) into Eq. (A17), we can obtain the
complex-conjugate WME-GF,

G�r, r0� �
X∞
m�1

1

−vg ,mPm�km�
fΘ�z − z0�Em�ρ, km�E	

m�ρ0, km�

× exp�ikm�z − z0�� �Θ�z0 − z�E	
m�ρ, km�Em�ρ0, km�

× exp�−ikm�z − z0��g, (A19)

which along with its extension to z-periodic waveguides is com-
monly used in the previous literature [36,38,64,65]. For im-
plementing Eq. (A19), there is

vg ,mPm�km� � 4

ZZ
z�z0

1

2
Re�Em�ρ, km� ×H	

m�ρ, km�� · zdxdy,

for lossless waveguide modes [72], where the integral represents
the energy flux of the mth forward-traveling waveguide mode.

Figure 8 provides a numerical example showing the higher
accuracy of Eq. (A17) (our theory) compared with Eq. (A19)
(previous theories) for lossy waveguide modes. As sketched in
Fig. 8(a), the direct chiral-coupling system is selected to be the
gold-nanowire waveguide that supports the fundamental lossy
SPP mode, as shown in Fig. 2(b1) in the main text. A right-
handed circularly polarized point source (p� x� zi) is located
near the waveguide. To characterize the accuracy of the theo-
ries, the Ez components of the excited forward-propagating

SPP waveguide mode at the origin point O [denoted by
Ez,��0�] are calculated by using Eq. (A17), Eq. (A19), and the
mode-orthogonality theorem [73,79] [analogous to Eq. (10) in
the main text], and the results are denoted by E �new�

z,� �0�,
E �old�
z,� �0�, and E �orth�

z,� �0�, respectively. Then a relative error is

defined as jE �new=old�
z,� �0� − E �orth�

z,� �0�j∕jE �orth�
z,� �0�j to character-

ize the accuracy of Eq. (A17) or (A19). The inset of Fig. 8(b)
shows that with the decrease of the wavelength, the imaginary
part of the complex effective index neff (defined as km∕k0 with
k0 � 2π∕λ being the wavenumber in vacuum) of the SPP
waveguide mode increases, which implies an increase of the
propagation loss of the SPP waveguide mode. Resultantly, the
above defined relative error of Eq. (A19) increases with the de-
crease of wavelength, as shown by the blue dashed curve in
Fig. 8(b). In contrast, the relative error of Eq. (A17) keeps at
a low level (<3%) for all the wavelengths, as shown by the
blue solid curve in Fig. 8(b).

2. Derivation of the Relation between the
Chiral-Coupling Directivity (g) and T-Spin (S3)
of the Field: Eq. (7) in the Main Text
Our derivation starts from two assumptions that the point
source is right-handed circularly polarized, and that the cou-
pling structure is symmetric with respect to the z � z0 plane.
Under the two assumptions, one can then obtain Eqs. (3) and
(4) in the main text. Inserting Eq. (4) into Eq. (3), one obtains

β�,m � E coupling
x,m �r0� − iE coupling

z,m �r0�
hψ−,mjψ�,mi

, (A20a)

β−,m � E coupling
x,m �r0� � iE coupling

z,m �r0�
hψ−,mjψ�,mi

, (A20b)

where one can define according to Eq. (4)

E coupling
x,m �r0� � E coupling

x,−,m �r0� � E coupling
x,�,m �r0�, (A21a)

E coupling
z,m �r0� � −E coupling

z,−,m �r0� � E coupling
z,�,m �r0�: (A21b)

Equation (A20) directly gives

jβ�,mj2�
jE coupling

x,m j2�jE coupling
z,m j2 −2Im�E coupling

x,m �E coupling
z,m �∗�

jhψ−,mjψ�,mij2
,

(A22a)

jβ−,mj2�
jE coupling

x,m j2�jE coupling
z,m j2�2Im�E coupling

x,m �E coupling
z,m �∗�

jhψ−,mjψ�,mij2
,

(A22b)

where the r0 dependence is omitted to simplify the symbols.
Inserting Eq. (A22) into the definition of the directivity
factor g, one simply obtains

g � jβ�,mj2 − jβ−,mj2
jβ�,mj2 � jβ−,mj2

� −2 Im�E coupling
x,m �E coupling

z,m �∗�
jE coupling

x,m j2 � jE coupling
z,m j2

� S3,

(A23)

where the last equality is just the definition of the Stokes
parameter S3 for the field E coupling

x,m and E coupling
z,m excited by the

incident waveguide mode.

Fig. 8. Numerical example showing the higher accuracy of
Eq. (A17) (our theory) compared with Eq. (A19) (previous theories)
for lossy waveguide modes. (a) Sketch of the direct chiral-coupling
system composed of a gold-nanowire waveguide and a nearby chiral
source (the red dot). The waveguide is identical to that considered
in Fig. 2(b1) in the main text and supports the fundamental lossy
SPP mode as shown in Fig. 2(b1). A right-handed circularly polarized
point source is located at r0 � �x0, y0, z0� � �D∕2� 15 nm, 0, 0�,
with the coordinate origin O set at the inner center of the waveguide.
(b) Relative error of Ez,��0� of the excited forward-propagating SPP
waveguide mode (see its detailed definition in the text) obtained with
Eq. (A17) (blue solid curve) and Eq. (A19) (blue dashed curve) for
different wavelengths. The inset shows the imaginary part of the com-
plex effective index neff of the SPP waveguide mode plotted as a func-
tion of the wavelength. In calculating the Ez,��0� with Eq. (A17),
Eq. (A19), and the mode-orthogonality theorem, the full-wave aperi-
odic Fourier modal method (a-FMM) [74,75] is used to obtain the
fundamental SPP waveguide mode and the total electromagnetic field
excited by the point source.
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3. Derivation of the Relation between the
Chiral-Coupling Directivity (g) and T-Spin (S3)
of the Source: Eq. (8) in the Main Text
Our derivation starts from two assumptions: first, the system
is designed to be able to achieve a chiral coupling that only
the forward-propagating waveguide mode ψ�,m is excited by
a right-handed circularly polarized point source jσ ; second,
the coupling structure is symmetric with respect to the
z � z0 plane. Under the two assumptions, one can then obtain
Eqs. (6) and (4) in the main text, respectively. Now we consider
an arbitrarily polarized point source expressed as a current
density j � �pxx � pzz�δ�r − r0�. Inserting p � pxx � pzz into
Eq. (1) and using Eqs. (6) and (4) in the main text, one can
obtain

β�,m � E coupling
x,−,m px � E coupling

z,−,m pz
hψ−,mjψ�,mi

� E coupling
x,−,m px − iE

coupling
x,−,m pz

hψ−,mjψ�,mi
� px − ipz

hψ−,mjψ�,mi∕E coupling
x,�,m

,

(A24a)

β−,m � E coupling
x,�,m px � E coupling

z,�,m pz
hψ−,mjψ�,mi

� E coupling
x,�,m px � iE coupling

x,�,m pz
hψ−,mjψ�,mi

� px � ipz
hψ−,mjψ�,mi∕E coupling

x,�,m

,

(A24b)

where the r0 dependence is omitted to simplify the symbols.
Equation (A24) directly gives

jβ�,mj2 �
jpx j2 � jpz j2 − 2 Im�pxp	z �
jhψ−,mjψ�,mi∕E coupling

x,�,m j2
, (A25a)

jβ−,mj2 �
jpx j2 � jpz j2 � 2 Im�pxp	z �
jhψ−,mjψ�,mi∕E coupling

x,�,m j2
: (A25b)

Inserting Eq. (A25) into the definition of the directivity factor
g , one simply obtains

g � jβ�,mj2 − jβ−,mj2
jβ�,mj2 � jβ−,mj2

� −2 Im�pxp	z �
jpx j2 � jpz j2

� S3,source, (A26)

where the last equality is just the definition of the Stokes
parameter S3,source for the polarization of the point source.

APPENDIX B: SOME DETAILS FOR THE
THEORETICAL DESIGN AND ANALYSIS OF THE
CHIRAL-COUPLING SYSTEM

1. Determination of the Length of the SA in the
Chiral-Coupling System
For the indirect chiral-coupling system proposed in Section 3 of
the main text, the determination of the length of the SA in the
system will be explained in this section. A point current source
jx � δ�r − r0�x polarized along the x direction is placed near
the SA in the air, as illustrated in the inset of Fig. 9(a). With
the full-wave FEM (carried out with the commercial software
COMSOL Multiphysics), the calculated total spontaneous

emission rate Γtotal of the point source as a function of the
length LSA of the SA is shown in Fig. 9(a). We can see that
when LSA � 370 nm, Γtotal will reach a maximum, implying
that the antenna is at a lower order of FP resonance (the cor-
responding LSA being smaller and the resonance being
stronger), with the electric-field distribution shown in Fig. 9(b).
From the expression of Γtotal � −Re�Ex�r0��∕2, we can con-
clude that when the SA is at this FP resonance, the field com-
ponent Ex�r0� at the position of the point source will be
enhanced significantly, which thus meets the design require-
ment of the SA as stated in the main text (see Section 3.A).

2. Derivation of the SPP Model for the Original
Problem
In this subsection, we will provide detailed derivation of the
SPP model for the original problem (under excitation by a
point source), so as to obtain the expression of the total sponta-
neous emission rate Γtotal of the chiral source [Eq. (18) in
the main text]. As shown in Fig. 3(b1) in the main text, the
source jσ is located in the nanogap between the DA and the
SA, and excites the right-going and left-going symmetric (anti-
symmetric) SPPs on the DA with coefficients of asyms and bsyms

(aasyms and basyms ). To determine these SPP coefficients, a set of
coupled-SPP equations can be written as

as � bsurb, (B1a)

bs � γ � asura, (B1b)

where for as, bs, ra, rb, γ, and u, the superscripts “sym/asym” are
all omitted for the same reason as described after Eq. (9): the
symmetric and antisymmetric SPPs on the DA cannot excite
each other and satisfy coupled equations of the same form,
so that their coefficients can be solved independently. In
Eq. (B1), γ is the excitation coefficient of the left-going SPP
on the semi-infinite DA by the source in the nanogap between
the DA and the SA, as shown in Fig. 3(b2), and can be

Fig. 9. (a) Total spontaneous emission rate Γtotal of an x-polarized
point source plotted as a function of the length LSA of the SA. Γtotal is
normalized by the spontaneous emission rate Γair of the point source
in air, with Γair=ηvack20na∕�12π�. The structure and coordinate system
are shown in the inset, with coordinate origin O at the inner center of
the antenna. The coordinate of the point source (shown by the red
dot) is �x, y, z� � �−D∕2 − 13 nm, 0, 0�, with D � 40 nm being
the side length of the antenna cross section. (b) Distribution of nor-
malized electric-field intensity �jEj∕Γair�2 excited by the point source,
obtained for LSA � 370 nm and in sections y � 0 (left) and x � 0
(right).
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calculated as the scattering matrix element [78] with the fully
vectorial a-FMM [74,75]. The definitions of ra, rb, and u can
be found after Eq. (9). Similar to Eq. (9), Eq. (B1) can be
understood intuitively as well. Equation (B1b) shows that
the coefficient bs of the left-going SPP on the DA results from
two contributions: the first one (γ) is from the direct excitation
by the source, and the second one is from the reflection (ra) of
the damped (u) right-going SPP (with coefficient as) at the
right terminal of the DA coupled with the SA.
Equation (B1a) can be understood in a similar way. Solving
Eq. (B1), one can obtain

as �
γurb

1 − u2rarb
, (B2a)

bs �
γ

1 − u2rarb
: (B2b)

With the as and bs obtained, in the gap region between the DA
and the SA where the source is located, the total electromag-
netic field excited by the source can be expressed as

ψ total � ψ source � asyms usymψ sym
R � aasyms uasymψasym

R , (B3)

where ψ source represents the field excited by the source in the
nanogap between the SA and a semi-infinite DA, as shown in
Fig. 3(b2), and can be calculated with the a-FMM. The def-
inition of ψ sym=asym

R can be found after Eq. (13). Equation (B3)
shows that the field in the nanogap where the source is located
results from three contributions: the first contribution is from
a direct excitation by the source, and the other two contribu-
tions are from the coupling of the right-going symmetric and
antisymmetric SPPs on the DA. According to Eq. (B3) and
Γtotal � −fRe�Ex�r0�� � Im�Ez�r0��g∕2, one can obtain the
expression of Eq. (18) in the main text.

Next, we will give the coefficients β� of the SPP on the
waveguide excited by the chiral point source based on the
SPP model for the original problem, and will further prove that
the β� given by the SPP models for the reciprocal problem and
for the original problem are identical.

After obtaining the coefficients bsyms and basyms [Eq. (B2b)]
of the left-going symmetric and antisymmetric SPPs on the
DA with the SPP model for the original problem, we can then
obtain

β� � bsyms usymχsym� � basyms uasymχasym� , (B4a)

β− � bsyms usymχsym− � basyms uasymχasym− , (B4b)

where χsym� and χsym− (χasym� and χasym− ) respectively denote the
coefficients of the forward and backward SPPs on the wave-
guide excited by the left-going symmetric (antisymmetric)
SPP on the DA with unitary coefficient, as shown in Fig. 3(b3)
in the main text, and can be calculated as the scattering matrix
elements [78] with the mode orthogonality theorem [73,79]
[analogous to Eq. (10) in the main text]. Alternatively, if
αsym=asym
� have been calculated, then χsym=asym

� can be obtained
as follows based on the reciprocity theorem [72,73]:

χsym=asym
− hψ−jψ�i � αsym=asym

� hψ sym=asym
− jψ sym=asym

� i, (B5a)

χsym=asym
� hψ−jψ�i � αsym=asym

− hψ sym=asym
− jψ sym=asym

� i, (B5b)

where ψ sym=asym
� and ψ sym=asym

− are defined after Eq. (10) in the
main text, and ψ� and ψ− are defined after Eq. (14) in
the main text.

To prove that the β� given by Eq. (B4) is identical to those
given by Eq. (14) in the main text of the SPP model for the
reciprocal problem, for the problems as shown in Figs. 3(a3)
and 3(b2), one can obtain with the reciprocity theorem
[72,73] between the point source and the SPP on the DA,

γsym=asymhψ sym=asym
− jψ sym=asym

� i � Esym=asym
R �r0� · pσ , (B6)

where jσ � δ�r − r0�pσ represents a right-handed circularly po-
larized point source located at r0 � �x0, y0, z0�, with
pσ � x � zi and z0 � 0. With the symmetry of the electro-
magnetic field about z � z0 plane, one has Esym

R �r0� �
xE sym

x,R �r0� � yE sym
y,R �r0� and Easym

R �r0� � zE asym
z,R �r0�. Hence,

Eq. (B6) can be rewritten as

γsymhψ sym
− jψ sym

� i � E sym
x,R �r0�, (B7a)

γasymhψasym
− jψasym

� i � iE asym
z,R �r0�: (B7b)

Substituting Eq. (B7) into Eq. (B5) and then into Eq. (B4), one
can obtain

β� � bsyms usymαsym−

E sym
x,R �r0�

γsymhψ−jψ�i

� basyms uasymαasym−

iE asym
z,R �r0�

γasymhψ−jψ�i
, (B8a)

β− � bsyms usymαsym�
E sym
x,R �r0�

γsymhψ−jψ�i

� basyms uasymαasym�
iE asym

z,R �r0�
γasymhψ−jψ�i

: (B8b)

Substituting Eq. (B2b) of bsym=asym
s given by the SPP model for

the original problem into Eq. (B8), one can get

β� �
�

α−
1 − u2rarb

�
sym usymE sym

x,R �r0�
hψ−jψ�i

�
�

α−
1 − u2rarb

�
asym iuasymE asym

z,R �r0�
hψ−jψ�i

, (B9a)

β− �
�

α�
1 − u2rarb

�
sym usymE sym

x,R �r0�
hψ−jψ�i

�
�

α�
1 − u2rarb

�
asym iuasymE asym

z,R �r0�
hψ−jψ�i

, (B9b)

where �·�sym∕asym means that all the variables in the parentheses
share this superscript. At this point, by using Eq. (B4) of the
SPP model for the original problem and the reciprocity theo-
rem, we obtain another expression of Eq. (B9) for the β�.

In the SPP model for the reciprocal problem, by substituting
Eqs. (11a) and (12a) into Eq. (14), we can see that Eq. (14)
simply becomes Eq. (B9), i.e., the β� given by the SPP models
for the original problem and for the reciprocal problem are
identical. Therefore, for the indirect chiral coupling between
the source and the waveguide mode mediated by the FP
resonance proposed in this paper, the physical interpretations
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offered by the SPP models for the original problem and for the
reciprocity problem are logically unified.

3. Performance for the System without the SA and
for a Bare Waveguide
To further verify the indispensability of the FP nanocavity in
achieving the indirect chiral coupling, Fig. 10 exhibits a weaker
unidirectionality of the excited SPP waveguide mode without
the SA [Figs. 10(a1) and 10(b1)], and a proximate disappear-
ance of the coupling between the source and the SPP waveguide
mode without the SA and the DA simultaneously [i.e., a bare
waveguide, Figs. 10(a2) and 10(b2)], where the source is right-
handed circularly polarized at a position corresponding to
L � 185 nm [Figs. 10(a1) and 10(a2)] or 500 nm [Figs. 10
(b1) and 10(b2)] [i.e., n � 1 or 3 in Eq. (16)], respectively.
More specifically, there are ΓSPP,�∕Γair �ΓSPP,−∕Γair� � 15.32
(8.684) and 1.951 × 10−2 (6.845 × 10−4) for Figs. 10(a1)
and 10(a2), respectively, and ΓSPP,�∕Γair �ΓSPP,−∕Γair� �
4.349 (11.17) and 2.000 × 10−4 (1.795 × 10−4) for Figs. 10(b1)
and 10(b2), respectively (obtained with the a-FMM).

In addition, we will make a quantitative comparison of per-
formances between the direct chiral-coupling system of a bare
SPP waveguide [57,59] and the indirect chiral-coupling system
proposed in the main text. As shown in Fig. 11(a), the direct
chiral-coupling system consists of a gold-nanowire waveguide
identical to the waveguide in the indirect chiral-coupling sys-
tem, and it is excited by a nearby right-handed circularly po-
larized point source. Comparing Fig. 11(b) and Fig. 6(a) in the
main text, one can see that the Purcell factor FP of the chiral
point source in the direct chiral-coupling system is far smaller
than that in the indirect chiral-coupling system. The results of
the coupling efficiencies η� and η− of the forward- and back-
ward-propagating fundamental SPP modes on the waveguide
and the directivity factor g are shown in Fig. 11(c). As the
source-waveguide distance d increases from 10 to 50 nm,
the dominant η� decreases from 38% to 6.9% and g increases
from 0.75 to 0.83. Within the effective-coupling distance

(d < 100 nm for instance, for which η� > 1.2%), which is
determined by the evanescent-field region of the SPP wave-
guide mode [see Fig. 2(b1) in the main text], g does not exceed
0.89. In contrast, Figs. 6(b) and 4(c) in the main text show that
the indirect chiral-coupling system can drastically enlarge the
effective-coupling distance while achieving a significant chiral
coupling. For instance, for DA lengths L � 35, 185, 500 nm
(corresponding to the source-waveguide distance L� 7 nm),
there are g � 0.842, 0.999, −0.892, corresponding to
η� � 44%, η� � 25%, η− � 16%, respectively.

4. Performance of the Indirect Chiral-Coupling
System with a Substrate
In this subsection, we will provide the performance of the
indirect chiral-coupling system with a substrate, so as to show
the robustness of performance and feasibility of an experimen-
tal demonstration for the proposed system with practical
configurations.

As sketched in Fig. 12(a), the coupling structure is consid-
ered to be located on a glass substrate (with a refractive index
of 1.45) in air. The sizes of the gold nanowires and gaps are all
set to be identical to those of the system without a substrate
(as specified in Section 3.A of the main text). The chiral point
source of right-handed circular polarization is considered to re-
present a quantum dot of height 10 nm [64] on the substrate
and is thus set to be 5 nm away from the substrate. The length
of the SA is set to be LSA � 290 nm according to the procedure
in Appendix B.1, which is different from the LSA � 370 nm
for the system without a substrate.

The coupling rates ΓSPP,� and ΓSPP,− of the forward- and
backward-propagating fundamental SPP waveguide modes, the
directivity factor g � �ΓSPP,� − ΓSPP,−�∕�ΓSPP,� � ΓSPP,−�, the
Purcell factor FP � Γtotal∕Γair of the chiral source, and the cou-
pling efficiency η� � ΓSPP,�∕Γtotal of the SPP waveguide
modes plotted as functions of the DA length L are shown
in Figs. 12(b)–12(e), respectively. The DA lengths determined

Fig. 10. Distribution (in y � 0 plane) of the normalized electric-
field intensity �jEj∕Γair�2 in the structure without the SA (a1) or
without the DA and the SA (a2), which is excited by a right-handed
circularly polarized point source at r0 corresponding to a DA length of
L � 185 nm [i.e., n � 1 in Eq. (16)]. (b1), (b2) The same as
(a1) and (a2) but for L � 500 nm [i.e., n � 3 in Eq. (16)]. The results
are obtained with the FEM.

Fig. 11. (a) Sketch of the direct chiral-coupling system, which is
composed of a bare SPP waveguide excited by a nearby right-handed
circularly polarized point source (shown by the red dot). The wave-
guide is a gold nanowire with a square cross section of side length
D � 40 nm (identical to the waveguide in the indirect chiral-coupling
system proposed in the main text). The point source is located at
r0 � �D∕2� d , 0, 0�, with the coordinate origin O set at the inner
center of the waveguide. (b) Purcell factor FP � Γtotal∕Γair of the
point source plotted as a function of the source-waveguide distance d .
(c) Coupling efficiency η� � ΓSPP,�∕Γtotal of the up-going (blue
curve) and down-going (red curve) fundamental SPP modes on the
waveguide, and the directivity factor g (green curve) plotted as func-
tions of d . The results are obtained with the full-wave a-FMM.
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by the phase-matching condition of Eq. (16) (with different
resonance order n) in the main text are shown by the vertical
green dashed lines. All these results show that after adding a
substrate and considering the actual location of a quantum-
dot emitter on the substrate, the performances of the proposed
indirect chiral-coupling system as demonstrated in the main
text can be largely preserved: the FP resonance of different
orders can regulate the chiral coupling to achieve nearly perfect
chiral coupling (at n � 0, 1, 4 resonances), non-chiral coupling
(n � 2), and a direction reversal of the chiral coupling (be-
tween n � 0, 1 and n � 3, 4) without changing the chirality
of the source, and simultaneously, can achieve high peak values
of FP and high values of η� or η−.
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