• Journal of Semiconductors
  • Vol. 43, Issue 9, 092601 (2022)
Lishu Wu1、2, Jiayun Dai2, Yuechan Kong2, Tangsheng Chen2, and Tong Zhang1、3、*
Author Affiliations
  • 1Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
  • 2Science and Technology on Monolithic Integrated Circuits and Modules Laboratory, Nanjing Electronic Devices Institute, Nanjing 210016, China
  • 3Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology, Ministry of Education, School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China
  • show less
    DOI: 10.1088/1674-4926/43/9/092601 Cite this Article
    Lishu Wu, Jiayun Dai, Yuechan Kong, Tangsheng Chen, Tong Zhang. RF characterization of InP double heterojunction bipolar transistors on a flexible substrate under bending conditions[J]. Journal of Semiconductors, 2022, 43(9): 092601 Copy Citation Text show less
    References

    [1] K H Cherenack, A Z Kattamis, B Hekmatshoar et al. Amorphous-silicon thin-film transistors fabricated at 300 °C on a free-standing foil substrate of clear plastic. IEEE Electron Device Lett, 28, 1004(2007).

    [2] S Saxena, D C Kim, J H Park et al. Polycrystalline silicon thin-film transistor using Xe flash-lamp annealing. IEEE Electron Device Lett, 31, 1242(2010).

    [3] B Crone, A Dodabalapur, Y Y Lin et al. Large-scale complementary integrated circuits based on organic transistors. Nature, 403, 521(2000).

    [4] U Haas, H Gold, A Haase et al. Submicron pentacene-based organic thin film transistors on flexible substrates. Appl Phys Lett, 91, 043511(2007).

    [5] T Takahashi, K Takei, E Adabi et al. Parallel array InAs nanowire transistors for mechanically bendable, ultrahigh frequency electronics. ACS Nano, 4, 5855(2010).

    [6] E Menard, R G Nuzzo, J A Rogers. Bendable single crystal silicon thin film transistors formed by printing on plastic substrates. Appl Phys Lett, 86, 093507(2005).

    [7] J H Ahn, H S Kim, K J Lee et al. High-speed mechanically flexible single-crystal silicon thin-film transistors on plastic substrates. IEEE Electron Device Lett, 27, 460(2006).

    [8] Y M Lin, C Dimitrakopoulos, K A Jenkins et al. 100-GHz transistors from wafer-scale epitaxial graphene. Science, 327, 662(2010).

    [9] Y Cao, G J Brady, H Gui et al. Radio frequency transistors using aligned semiconducting carbon nanotubes with current-gain cutoff frequency and maximum oscillation frequency simultaneously greater than 70 GHz. ACS Nano, 10, 6782(2016).

    [10] Y G Sun, E Menard, J A Rogers et al. Gigahertz operation in flexible transistors on plastic substrates. Appl Phys Lett, 88, 183509(2006).

    [11] D Akinwande, N Petrone, J Hone. Two-dimensional flexible nanoelectronics. Nat Commun, 5, 5678(2014).

    [12] K J Lee, M A Meitl, J H Ahn et al. Bendable GaN high electron mobility transistors on plastic substrates. J Appl Phys, 100, 124507(2006).

    [13] N Petrone, I Meric, T R Chari et al. Graphene field-effect transistors for radio-frequency flexible electronics. IEEE J Electron Devices Soc, 3, 44(2015).

    [14] J Lee, T J Ha, H F Li et al. 25 GHz embedded-gate graphene transistors with high-K dielectrics on extremely flexible plastic sheets. ACS Nano, 7, 7744(2013).

    [15] C Wang, J C Chien, H Fang et al. Self-aligned, extremely high frequency III-V metal-oxide-semiconductor field-effect transistors on rigid and flexible substrates. Nano Lett, 12, 4140(2012).

    [16] J Shi, N Wichmann, Y Roelens et al. Microwave performance of 100 nm-gate In0.53Ga0.47As/In0.52Al0.48As high electron mobility transistors on plastic flexible substrate. Appl Phys Lett, 99, 203505(2011).

    [17] J Shi, N Wichmann, Y Roelens et al. Electrical characterization of In0.53Ga0.47As/In0.52Al0.48As high electron mobility transistors on plastic flexible substrate under mechanical bending conditions. Appl Phys Lett, 102, 243503(2013).

    [18] L S Wu, J Y Dai, Y Wang et al. High performance wafer scale flexible InP double heterogeneous bipolar transistors. Semicond Sci Technol, 36, 03LT02(2021).

    [19] Liu W. Thermal-electrical properties. In: Handbook III-V Heterojunction Bipolar Transistors. New York: Wiley, 1998

    [20] J M Ruiz-Palmero, U Hammer, H Jäckel et al. Comparative technology assessment of future InP HBT ultrahigh-speed digital circuits. Solid State Electron, 51, 842(2007).

    [21] B Niu, Y Wang, W Cheng et al. Common base four-finger InGaAs/InP double heterojunction bipolar transistor with maximum oscillation frequency 535 GHz. Chin Phys Lett, 32, 172(2015).

    [22] W Cheng, Y Wang, Y Zhao et al. A THz InGaAs/InP double heterojunction bipolar transistor withfmax= 325 GHz and BVCBO = 10.6 V. J Semicond, 34, 054006(2013).

    [23] Y H Jung, T H Chang, H L Zhang et al. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat Commun, 6, 7170(2015).

    [24] Y P Zeng, O Ostinelli, R Lövblom et al. 400-GHz InP/GaAsSb DHBTs with low-noise microwave performance. IEEE Electron Device Lett, 31, 1122(2010).

    [25] T H Chang, K L Xiong, S H Park et al. High power fast flexible electronics: Transparent RF AlGaN/GaN HEMTs on plastic substrates. 2015 IEEE MTT-S International Microwave Symposium, 1(2015).

    [26] A Lecavelier des Etangs-Levallois, E Dubois, M Lesecq et al. 150-GHz RF SOI-CMOS technology in ultrathin regime on organic substrate. IEEE Electron Device Lett, 32, 1510(2011).

    [27] J H Seo, T Ling, S Q Gong et al. Fast flexible transistors with a nanotrench structure. Sci Rep, 6, 24771(2016).

    [28] G X Qin, T H Cai, H C Yuan et al. Flexible radio-frequency single-crystal germanium switch on plastic substrates. Appl Phys Lett, 104, 163501(2014).

    [29] S J Cho, Y H Jung, Z Q Ma. X-band compatible flexible microwave inductors and capacitors on plastic substrate. IEEE J Electron Devices Soc, 3, 435(2015).

    [30] L Sun, G X Qin, H Huang et al. Flexible high-frequency microwave inductors and capacitors integrated on a polyethylene terephthalate substrate. Appl Phys Lett, 96, 013509(2010).

    Lishu Wu, Jiayun Dai, Yuechan Kong, Tangsheng Chen, Tong Zhang. RF characterization of InP double heterojunction bipolar transistors on a flexible substrate under bending conditions[J]. Journal of Semiconductors, 2022, 43(9): 092601
    Download Citation