• Journal of Semiconductors
  • Vol. 43, Issue 5, 051202 (2022)
Wanlong Wang1, Dongyang Zhang2, Rong Liu1, Deepak Thrithamarassery Gangadharan2, Furui Tan1, and Makhsud I. Saidaminov2
Author Affiliations
  • 1Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng 475004, China
  • 2Department of Chemistry, Department of Electrical & Computer Engineering, and Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, British Columbia V8P 5C2, Canada
  • show less
    DOI: 10.1088/1674-4926/43/5/051202 Cite this Article
    Wanlong Wang, Dongyang Zhang, Rong Liu, Deepak Thrithamarassery Gangadharan, Furui Tan, Makhsud I. Saidaminov. Characterization of interfaces: Lessons from the past for the future of perovskite solar cells[J]. Journal of Semiconductors, 2022, 43(5): 051202 Copy Citation Text show less
    References

    [1] T Dullweber, M Stöhr, C Kruse et al. Evolutionary PERC+ solar cell efficiency projection towards 24% evaluating shadow-mask-deposited poly-Si fingers below the Ag front contact as next improvement step. Sol Energy Mater Sol Cells, 212, 110586(2020).

    [2] J Yu, M D Liao, D Yan et al. Activating and optimizing evaporation-processed magnesium oxide passivating contact for silicon solar cells. Nano Energy, 62, 181(2019).

    [3] T G Allen, J Bullock, X B Yang et al. Passivating contacts for crystalline silicon solar cells. Nat Energy, 4, 914(2019).

    [4] K Yoshikawa, H Kawasaki, W Yoshida et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat Energy, 2, 1(2017).

    [5] T Kato, J L Wu, Y Hirai et al. Record efficiency for thin-film polycrystalline solar cells up to 22.9% achieved by Cs-treated Cu(In, Ga)(Se, S)2. IEEE J Photovolt, 9, 325(2019).

    [6] W K Metzger, S Grover, D Lu et al. Exceeding 20% efficiency with in situ group V doping in polycrystalline CdTe solar cells. Nat Energy, 4, 837(2019).

    [7] J M Burst, J N Duenow, D S Albin et al. CdTe solar cells with open-circuit voltage breaking the 1 V barrier. Nat Energy, 1, 16015(2016).

    [8] M A Green, Y Hishikawa, E D Dunlop et al. Solar cell efficiency tables (Version 53). Prog Photovolt: Res Appl, 27, 3(2019).

    [9] M Jeong, I W Choi, E M Go et al. Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science, 369, 1615(2020).

    [10] T H Han, S Tan, J J Xue et al. Interface and defect engineering for metal halide perovskite optoelectronic devices. Adv Mater, 31, 1803515(2019).

    [11] Y Bai, X Y Meng, S H Yang. Interface engineering for highly efficient and stable planar p-i-n perovskite solar cells. Adv Energy Mater, 8, 1701883(2018).

    [12] P Schulz, D Cahen, A Kahn. Halide perovskites: Is it all about the interfaces. Chem Rev, 119, 3349(2019).

    [13] F Zhang, K Zhu. Additive engineering for efficient and stable perovskite solar cells. Adv Energy Mater, 10, 1902579(2020).

    [14] C T Zuo, H J Bolink, H W Han et al. Advances in perovskite solar cells. Adv Sci, 3, 1500324(2016).

    [15] N J Jeon, H Na, E H Jung et al. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat Energy, 3, 682(2018).

    [16] Q Jiang, Y Zhao, X W Zhang et al. Surface passivation of perovskite film for efficient solar cells. Nat Photonics, 13, 460(2019).

    [17] G Yang, Z W Ren, K Liu et al. Stable and low-photovoltage-loss perovskite solar cells by multifunctional passivation. Nat Photonics, 15, 681(2021).

    [18] S Y Shao, M A Loi. The role of the interfaces in perovskite solar cells. Adv Mater Interfaces, 7, 1901469(2020).

    [19] Y W Miao, M M Zheng, H X Wang et al. In-situ secondary annealing treatment assisted effective surface passivation of shallow defects for efficient perovskite solar cells. J Power Sources, 492, 229621(2021).

    [20] P Wang, F Cai, L Yang et al. Eliminating light-soaking instability in planar heterojunction perovskite solar cells by interfacial modifications. ACS Appl Mater Interfaces, 10, 33144(2018).

    [21] F Zheng, X M Wen, T L Bu et al. Slow response of carrier dynamics in perovskite interface upon illumination. ACS Appl Mater Interfaces, 10, 31452(2018).

    [22] W Chen, Y C Zhou, G C Chen et al. Alkali chlorides for the suppression of the interfacial recombination in inverted planar perovskite solar cells. Adv Energy Mater, 9, 1803872(2019).

    [23] S B Xiong, T Hao, Y Y Sun et al. Defect passivation by nontoxic biomaterial yields 21% efficiency perovskite solar cells. J Energy Chem, 55, 265(2021).

    [24] T S Sherkar, C Momblona, L Gil-Escrig et al. Recombination in perovskite solar cells: Significance of grain boundaries, interface traps, and defect ions. ACS Energy Lett, 2, 1214(2017).

    [25] A M A Leguy, Y H Hu, M Campoy-Quiles et al. Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells. Chem Mater, 27, 3397(2015).

    [26] F Deng, X T Li, X Lv et al. Low-temperature processing all-inorganic carbon-based perovskite solar cells up to 11.78% efficiency via alkali hydroxides interfacial engineering. ACS Appl Energy Mater, 3, 401(2020).

    [27] J H Wu, J J Shi, Y M Li et al. Quantifying the interface defect for the stability origin of perovskite solar cells. Adv Energy Mater, 9, 1901352(2019).

    [28] T T Wu, C Zhen, H Z Zhu et al. Gradient Sn-doped heteroepitaxial film of faceted rutile TiO2 as an electron selective layer for efficient perovskite solar cells. ACS Appl Mater Interfaces, 11, 19638(2019).

    [29] G X Wang, L P Wang, J H Qiu et al. In situ passivation on rear perovskite interface for efficient and stable perovskite solar cells. ACS Appl Mater Interfaces, 12, 7690(2020).

    [30] H C Hsieh, C Y Hsiow, K F Lin et al. Analysis of defects and traps in N–I–P layered-structure of perovskite solar cells by charge-based deep level transient spectroscopy (Q-DLTS). J Phys Chem C, 122, 17601(2018).

    [31] Z H Liu, L B Qiu, L K Ono et al. A holistic approach to interface stabilization for efficient perovskite solar modules with over 2, 000-hour operational stability. Nat Energy, 5, 596(2020).

    [32] A Mahapatra, D Prochowicz, M M Tavakoli et al. A review of aspects of additive engineering in perovskite solar cells. J Mater Chem A, 8, 27(2020).

    [33] S L Cao, H X Wang, H Y Li et al. Critical role of interface contact modulation in realizing low-temperature fabrication of efficient and stable CsPbIBr2 perovskite solar cells. Chem Eng J, 394, 124903(2020).

    [34] M M Tavakoli, R Tavakoli, P Yadav et al. A graphene/ZnO electron transfer layer together with perovskite passivation enables highly efficient and stable perovskite solar cells. J Mater Chem A, 7, 679(2019).

    [35] X P Zheng, Y Hou, C X Bao et al. Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nat Energy, 5, 131(2020).

    [36] Z F Wu, Z H Liu, Z H Hu et al. Highly efficient and stable perovskite solar cells via modification of energy levels at the perovskite/carbon electrode interface. Adv Mater, 31, 1804284(2019).

    [37] M M Tavakoli, M Saliba, P Yadav et al. Synergistic crystal and interface engineering for efficient and stable perovskite photovoltaics. Adv Energy Mater, 9, 1802646(2019).

    [38] J J Yoo, S Wieghold, M C Sponseller et al. An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss. Energy Environ Sci, 12, 2192(2019).

    [39] C C Boyd, R Cheacharoen, T Leijtens et al. Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem Rev, 119, 3418(2019).

    [40] A J Pearson, G E Eperon, P E Hopkinson et al. Oxygen degradation in mesoporous Al2O3/CH3NH3PbI3−xClx perovskite solar cells: Kinetics and mechanisms. Adv Energy Mater, 6, 1600014(2016).

    [41] N K Noel, S D Stranks, A Abate et al. Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ Sci, 7, 3061(2014).

    [42] J Y Seo, H S Kim, S Akin et al. Novel p-dopant toward highly efficient and stable perovskite solar cells. Energy Environ Sci, 11, 2985(2018).

    [43] J Z Chen, N G Park. Inorganic hole transporting materials for stable and high efficiency perovskite solar cells. J Phys Chem C, 122, 14039(2018).

    [44] T A Berhe, W N Su, C H Chen et al. Organometal halide perovskite solar cells: Degradation and stability. Energy Environ Sci, 9, 323(2016).

    [45] G D Niu, X D Guo, L D Wang. Review of recent progress in chemical stability of perovskite solar cells. J Mater Chem A, 3, 8970(2015).

    [46] T Q Niu, J Lu, R Munir et al. Stable high-performance perovskite solar cells via grain boundary passivation. Adv Mater, 30, 1706576(2018).

    [47] Q Guo, F Yuan, B Zhang et al. Passivation of the grain boundaries of CH3NH3PbI3 using carbon quantum dots for highly efficient perovskite solar cells with excellent environmental stability. Nanoscale, 11, 115(2018).

    [48] J Yang, B D Siempelkamp, D Liu et al. Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. ACS Nano, 9, 1955(2015).

    [49] Z N Song, A Abate, S C Watthage et al. Perovskite solar cell stability in humid air: Partially reversible phase transitions in the PbI2-CH3NH3I-H2O system. Adv Energy Mater, 6, 1600846(2016).

    [50] G D Niu, W Z Li, F Q Meng et al. Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. J Mater Chem A, 2, 705(2014).

    [51] Y Chen, N Li, L Wang et al. Impacts of alkaline on the defects property and crystallization kinetics in perovskite solar cells. Nat Commun, 10, 1112(2019).

    [52] L L Zheng, Y H Chung, Y Z Ma et al. A hydrophobic hole transporting oligothiophene for planar perovskite solar cells with improved stability. Chem Commun, 50, 11196(2014).

    [53] X D Li, S Z Ke, X X Feng et al. Enhancing the stability of perovskite solar cells through cross-linkable and hydrogen bonding multifunctional additives. J Mater Chem A, 9, 12684(2021).

    [54] J Yang, C Liu, C S Cai et al. High-performance perovskite solar cells with excellent humidity and thermo-stability via fluorinated perylenediimide. Adv Energy Mater, 9, 1900198(2019).

    [55] W Q Wu, Z Yang, P N Rudd et al. Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells. Sci Adv, 5, eaav8925(2019).

    [56] X P Zheng, J Troughton, N Gasparini et al. Quantum dots supply bulk- and surface-passivation agents for efficient and stable perovskite solar cells. Joule, 3, 1963(2019).

    [57] B Yu, C Zuo, J Shi et al. Defect engineering on all-inorganic perovskite solar cells for high efficiency. J Semicond, 42, 050203(2021).

    [58] M Cheng, C Zuo, Y Wu et al. Charge-transport layer engineering in perovskite solar cells. Sci Bull, 65, 1237(2020).

    [59] J Zhang, S X Hou, R J Li et al. I/P interface modification for stable and efficient perovskite solar cells. J Semicond, 41, 052202(2020).

    [60] H Tan, A Jain, O Voznyy et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science, 355, 722(2017).

    [61] W L Tan, Y Y Choo, W C Huang et al. Oriented attachment as the mechanism for microstructure evolution in chloride-derived hybrid perovskite thin films. ACS Appl Mater Interfaces, 11, 39930(2019).

    [62] J Ren, Q Luo, Q Z Hou et al. Suppressing charge recombination and ultraviolet light degradation of perovskite solar cells using silicon oxide passivation. ChemElectroChem, 6, 3167(2019).

    [63] J Ha, H Kim, H Lee et al. Device architecture for efficient, low-hysteresis flexible perovskite solar cells: Replacing TiO2 with C60 assisted by polyethylenimine ethoxylated interfacial layers. Sol Energy Mater Sol Cells, 161, 338(2017).

    [64] X Zhang, S Ma, J B You et al. Tailoring molecular termination for thermally stable perovskite solar cells. J Semicond, 42, 112201(2021).

    [65] S S Shin, J H Suk, B J Kang et al. Energy-level engineering of the electron transporting layer for improving open-circuit voltage in dye and perovskite-based solar cells. Energy Environ Sci, 12, 958(2019).

    [66] S Idrissi, S Ziti, H Labrim et al. Band gaps of the solar perovskites photovoltaic CsXCl3 (X = Sn, Pb or Ge). Mater Sci Semicond Process, 122, 105484(2021).

    [67] L H Zhang, X Zhang, G Lu. Band alignment in two-dimensional halide perovskite heterostructures: Type I or type II. J Phys Chem Lett, 11, 2910(2020).

    [68] C S Liao, Z L Yu, P B He et al. Effects of composition modulation on the type of band alignments for Pd2Se3/CsSnBr3 van der Waals heterostructure: A transition from type I to type II. J Power Sources, 478, 229078(2020).

    [69] Y Raoui, H Ez-Zahraouy, S Kazim et al. Energy level engineering of charge selective contact and halide perovskite by modulating band offset: Mechanistic insights. J Energy Chem, 54, 822(2021).

    [70] K G Lim, S Ahn, Y H Kim et al. Universal energy level tailoring of self-organized hole extraction layers in organic solar cells and organic–inorganic hybrid perovskite solar cells. Energy Environ Sci, 9, 932(2016).

    [71] R Begum, M R Parida, A L Abdelhady et al. Engineering interfacial charge transfer in CsPbBr3 perovskite nanocrystals by heterovalent doping. J Am Chem Soc, 139, 731(2017).

    [72] D Meggiolaro, E Mosconi, A H Proppe et al. Energy level tuning at the MAPbI3 perovskite/contact interface using chemical treatment. ACS Energy Lett, 4, 2181(2019).

    [73] H Choi, J Jeong, H B Kim et al. Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells. Nano Energy, 7, 80(2014).

    [74] K Z Du, X M Wang, Q W Han et al. Heterovalent B-site co-alloying approach for halide perovskite bandgap engineering. ACS Energy Lett, 2, 2486(2017).

    [75] E L Unger, L Kegelmann, K Suchan et al. Roadmap and roadblocks for the band gap tunability of metal halide perovskites. J Mater Chem A, 5, 11401(2017).

    [76] X D Ding, H X Wang, C Chen et al. Passivation functionalized phenothiazine-based hole transport material for highly efficient perovskite solar cell with efficiency exceeding 22%. Chem Eng J, 410, 128328(2021).

    [77] L S Xie, Z Y Cao, J W Wang et al. Improving energy level alignment by adenine for efficient and stable perovskite solar cells. Nano Energy, 74, 104846(2020).

    [78] Z H Zhang, J Li, Z M Fang et al. Adjusting energy level alignment between HTL and CsPbI2Br to improve solar cell efficiency. J Semicond, 42, 030501(2021).

    [79] Q Cao, Z Li, J Han et al. Electron transport bilayer with cascade energy alignment for efficient perovskite solar cells. Sol RRL, 3, 1900333(2019).

    [80] P Schulz, E Edri, S Kirmayer et al. Interface energetics in organo-metal halide perovskite-based photovoltaic cells. Energy Environ Sci, 7, 1377(2014).

    [81] X Guo, C McCleese, C Kolodziej et al. Identification and characterization of the intermediate phase in hybrid organic–inorganic MAPbI3 perovskite. Dalton Trans, 45, 3806(2016).

    [82] M Shkir, M T Khan, S AlFaify. Novel Nd-doping effect on structural, morphological, optical, and electrical properties of facilely fabricated PbI2 thin films applicable to optoelectronic devices. Appl Nanosci, 9, 1417(2019).

    [83] L Yang, X Wang, X Mai et al. Constructing efficient mixed-ion perovskite solar cells based on TiO2 nanorod array. J Colloid Interface Sci, 534, 459(2019).

    [84] Y Chen, Q Meng, Y Xiao et al. Mechanism of PbI2in situ passivated perovskite films for enhancing the performance of perovskite solar cells. ACS Appl Mater Interfaces, 11, 44101(2019).

    [85] Q Cui, X C Zhao, H Lin et al. Improved efficient perovskite solar cells based on Ta-doped TiO2 nanorod arrays. Nanoscale, 9, 18897(2017).

    [86] J M Liu, L Q Zhu, S S Xiang et al. Cs-doped TiO2 nanorod array enhances electron injection and transport in carbon-based CsPbI3 perovskite solar cells. ACS Sustain Chem Eng, 7, 16927(2019).

    [87] S F Wu, C Chen, J M Wang et al. Controllable preparation of rutile TiO2 nanorod array for enhanced photovoltaic performance of perovskite solar cells. ACS Appl Energy Mater, 1, 1649(2018).

    [88] P S Chandrasekhar, A Dubey, Q Q Qiao. High efficiency perovskite solar cells using nitrogen-doped graphene/ZnO nanorod composite as an electron transport layer. Sol Energy, 197, 78(2020).

    [89] Y Zhao, H Tan, H Yuan et al. Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells. Nat Commun, 9, 1607(2018).

    [90] M Nukunudompanich, G Budiutama, K Suzuki et al. Dominant effect of the grain size of the MAPbI3 perovskite controlled by the surface roughness of TiO2 on the performance of perovskite solar cells. CrystEngComm, 22, 2718(2020).

    [91] E H Jung, N J Jeon, E Y Park et al. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature, 567, 511(2019).

    [92] V K Ravi, P K Santra, N Joshi et al. Origin of the substitution mechanism for the binding of organic ligands on the surface of CsPbBr3 perovskite nanocubes. J Phys Chem Lett, 8, 4988(2017).

    [93] C C Boyd, R C Shallcross, T Moot et al. Overcoming redox reactions at perovskite-nickel oxide interfaces to boost voltages in perovskite solar cells. Joule, 4, 1759(2020).

    [94] T H Wu, Y B Wang, X Li et al. Efficient defect passivation for perovskite solar cells by controlling the electron density distribution of donor-π-acceptor molecules. Adv Energy Mater, 9, 1803766(2019).

    [95] F Matteocci, Y Busby, J J Pireaux et al. Interface and composition analysis on perovskite solar cells. ACS Appl Mater Interfaces, 7, 26176(2015).

    [96] Y Busby, A Agresti, S Pescetelli et al. Aging effects in interface-engineered perovskite solar cells with 2D nanomaterials: A depth profile analysis. Mater Today Energy, 9, 1(2018).

    [97] D Xu, X Hua, S C Liu et al. In situ and real-time ToF-SIMS analysis of light-induced chemical changes in perovskite CH3NH3PbI3. Chem Commun Camb Engl, 54, 5434(2018).

    [98] S P Harvey, Z Li, J A Christians et al. Probing perovskite inhomogeneity beyond the surface: TOF-SIMS analysis of halide perovskite photovoltaic devices. ACS Appl Mater Interfaces, 10, 28541(2018).

    [99] S P Harvey, F Zhang, A Palmstrom et al. Mitigating measurement artifacts in TOF-SIMS analysis of perovskite solar cells. ACS Appl Mater Interfaces, 11, 30911(2019).

    [100] M V Lee, S R Raga, Y Kato et al. Transamidation of dimethylformamide during alkylammonium lead triiodide film formation for perovskite solar cells. J Mater Res, 32, 45(2017).

    [101] W C Lin, A Kovalsky, Y C Wang et al. Interpenetration of CH3NH3PbI3 and TiO2 improves perovskite solar cells while TiO2 expansion leads to degradation. Phys Chem Chem Phys, 19, 21407(2017).

    [102] B Yang, J Keum, O S Ovchinnikova et al. Deciphering halogen competition in organometallic halide perovskite growth. J Am Chem Soc, 138, 5028(2016).

    [103] J A Christians, P Schulz, J S Tinkham et al. Tailored interfaces of unencapsulated perovskite solar cells for >1, 000 hour operational stability. Nat Energy, 3, 68(2018).

    [104] J Kim, Y Lee, B Gil et al. A Cu2O–CuSCN nanocomposite as a hole-transport material of perovskite solar cells for enhanced carrier transport and suppressed interfacial degradation. ACS Appl Energy Mater, 3, 7572(2020).

    [105] F R Tan, H R Tan, M I Saidaminov et al. In situ back-contact passivation improves photovoltage and fill factor in perovskite solar cells. Adv Mater, 31, 1807435(2019).

    [106] A A B Baloch, F H Alharbi, G Grancini et al. Analysis of photocarrier dynamics at interfaces in perovskite solar cells by time-resolved photoluminescence. J Phys Chem C, 122, 26805(2018).

    [107] Y Lv, B Cai, Y H Wu et al. High performance perovskite solar cells using TiO2 nanospindles as ultrathin mesoporous layer. J Energy Chem, 27, 951(2018).

    [108] D Guo, D Bartesaghi, H Wei et al. Photoluminescence from radiative surface states and excitons in methylammonium lead bromide perovskites. J Phys Chem Lett, 8, 4258(2017).

    [109] X J Zhu, M Y Du, J S Feng et al. High-efficiency perovskite solar cells with imidazolium-based ionic liquid for surface passivation and charge transport. Angew Chem, 133, 4284(2021).

    [110] C Yang, H Wang, Y Miao et al. Interfacial molecular doping and energy level alignment regulation for perovskite solar cells with efficiency exceeding 23%. Am Chem Soc, 6, 2690(2021).

    [111] M Y Kuo, N Spitha, M P Hautzinger et al. Distinct carrier transport properties across horizontally vs vertically oriented heterostructures of 2D/3D perovskites. J Am Chem Soc, 143, 4969(2021).

    [112] Y C Pu, H C Fan, T W Liu et al. Methylamine lead bromide perovskite/protonated graphitic carbon nitride nanocomposites: Interfacial charge carrier dynamics and photocatalysis. J Mater Chem A, 5, 25438(2017).

    [113] E Nouri, M R Mohammadi, Z X Xu et al. Improvement of the photovoltaic parameters of perovskite solar cells using a reduced-graphene-oxide-modified titania layer and soluble copper phthalocyanine as a hole transporter. Phys Chem Chem Phys, 20, 2388(2018).

    [114] F J Ramos, S Jutteau, J Posada et al. Highly efficient MoOx-free semitransparent perovskite cell for 4 T tandem application improving the efficiency of commercially-available Al-BSF silicon. Sci Rep, 8, 16139(2018).

    [115] W H Zhang, Y Ding, Y Jiang et al. Simultaneously enhanced Jsc and FF by employing two solution-processed interfacial layers for inverted planar perovskite solar cells. RSC Adv, 7, 39523(2017).

    [116] N F Montcada, J M Marín-Beloqui, W Cambarau et al. Analysis of photoinduced carrier recombination kinetics in flat and mesoporous lead perovskite solar cells. ACS Energy Lett, 2, 182(2017).

    [117] L Z Zhu, J J Ye, X H Zhang et al. Performance enhancement of perovskite solar cells using a La-doped BaSnO3 electron transport layer. J Mater Chem A, 5, 3675(2017).

    [118] T Ye, J Xing, M Petrović et al. Temperature effect of the compact TiO2 layer in planar perovskite solar cells: An interfacial electrical, optical and carrier mobility study. Sol Energy Mater Sol Cells, 163, 242(2017).

    [119] E Serpetzoglou, I Konidakis, G Kakavelakis et al. Improved carrier transport in perovskite solar cells probed by femtosecond transient absorption spectroscopy. ACS Appl Mater Interfaces, 9, 43910(2017).

    [120] M I Dar, M Franckevičius, N Arora et al. High photovoltage in perovskite solar cells: New physical insights from the ultrafast transient absorption spectroscopy. Chem Phys Lett, 683, 211(2017).

    [121] Y B Gao, Y J Wu, Y Liu et al. Interface and grain boundary passivation for efficient and stable perovskite solar cells: The effect of terminal groups in hydrophobic fused benzothiadiazole-based organic semiconductors. Nanoscale Horizons, 5, 1574(2020).

    [122] W Q Wu, J X Zhong, J F Liao et al. Spontaneous surface/interface ligand-anchored functionalization for extremely high fill factor over 86% in perovskite solar cells. Nano Energy, 75, 104929(2020).

    [123] D Ghosh, D K Chaudhary, M Y Ali et al. All-inorganic quantum dot assisted enhanced charge extraction across the interfaces of bulk organo-halide perovskites for efficient and stable pin-hole free perovskite solar cells. Chem Sci, 10, 9530(2019).

    [124] A Bera, A Bera, A D Sheikh et al. Fast crystallization and improved stability of perovskite solar cells with Zn2SnO4 electron transporting layer: Interface matters. ACS Appl Mater Interfaces, 7, 28404(2015).

    [125] M A Afroz, C A Aranda, N K Tailor et al. Impedance spectroscopy for metal halide perovskite single crystals: Recent advances, challenges, and solutions. ACS Energy Lett, 6, 3275(2021).

    [126] K Jäger, J Sutter, M Hammerschmidt et al. Prospects of light management in perovskite/silicon tandem solar cells. Nanophotonics, 10, 1991(2021).

    [127] B Chen, Z J Yu, S Manzoor et al. Blade-coated perovskites on textured silicon for 26%-efficient monolithic perovskite/silicon tandem solar cells. Joule, 4, 850(2020).

    [128] C Y Xu, W Hu, G Wang et al. Coordinated optical matching of a texture interface made from demixing blended polymers for high-performance inverted perovskite solar cells. ACS Nano, 14, 196(2020).

    [129] M Filipič, P Löper, B Niesen et al. CH3NH3PbI3 perovskite / silicon tandem solar cells: Characterization based optical simulations. Opt Express, 23, A263(2015).

    [130] M I Hossain, A M Saleque, S Ahmed et al. Perovskite/perovskite planar tandem solar cells: A comprehensive guideline for reaching energy conversion efficiency beyond 30%. Nano Energy, 79, 105400(2021).

    [131] Y Liu, H Zhang, Y P Zhang et al. Influence of hole transport layers on internal absorption, charge recombination and collection in HC(NH2)2PbI3 perovskite solar cells. J Mater Chem A, 6, 7922(2018).

    [132] J Bisquert, M Janssen. From frequency domain to time transient methods for halide perovskite solar cells: The connections of IMPS, IMVS, TPC, and TPV. J Phys Chem Lett, 12, 7964(2021).

    [133] M Neukom, S Züfle, S Jenatsch et al. Opto-electronic characterization of third-generation solar cells. Sci Technol Adv Mater, 19, 291(2018).

    [134] D Saranin, P Gostischev, D Tatarinov et al. Copper iodide interlayer for improved charge extraction and stability of inverted perovskite solar cells. Materials, 12, 1406(2019).

    [135] A Pockett, M J Carnie. Ionic influences on recombination in perovskite solar cells. ACS Energy Lett, 2, 1683(2017).

    [136] B C O’Regan, P R F Barnes, X E Li et al. Optoelectronic studies of methylammonium lead iodide perovskite solar cells with mesoporous TiO2: Separation of electronic and chemical charge storage, understanding two recombination lifetimes, and the evolution of band offsets during J–V hysteresis. J Am Chem Soc, 137, 5087(2015).

    [137] O J Sandberg, K Tvingstedt, P Meredith et al. Theoretical perspective on transient photovoltage and charge extraction techniques. J Phys Chem C, 123, 14261(2019).

    [138] Y Lei, L Y Gu, W W He et al. Intrinsic charge carrier dynamics and device stability of perovskite/ZnO mesostructured solar cells in moisture. J Mater Chem A, 4, 5474(2016).

    [139] H Chen, K M Li, H Liu et al. Dependence of power conversion properties of hole-conductor-free mesoscopic perovskite solar cells on the loading of perovskite crystallites. Org Electron, 61, 119(2018).

    [140] F R Tan, S C Qu, Q W Jiang et al. Interpenetrated inorganic hybrids for efficiency enhancement of PbS quantum dot solar cells. Adv Energy Mater, 4, 1400512(2014).

    [141] D Hwang, J S Jin, H Lee et al. Hierarchically structured Zn2SnO4 nanobeads for high-efficiency dye-sensitized solar cells. Sci Rep, 4, 7353(2014).

    [142] I Mora-Seró, J Bisquert, F Fabregat-Santiago et al. Implications of the negative capacitance observed at forward bias in nanocomposite and polycrystalline solar cells. Nano Lett, 6, 640(2006).

    [143] P P Boix, Y H Lee, F Fabregat-Santiago et al. From flat to nanostructured photovoltaics: Balance between thickness of the absorber and charge screening in sensitized solar cells. ACS Nano, 6, 873(2012).

    [144] M Bag, L A Renna, R Y Adhikari et al. Kinetics of ion transport in perovskite active layers and its implications for active layer stability. J Am Chem Soc, 137, 13130(2015).

    [145] X Q Chen, Y Shirai, M Yanagida et al. Effect of light and voltage on electrochemical impedance spectroscopy of perovskite solar cells: An empirical approach based on modified randles circuit. J Phys Chem C, 123, 3968(2019).

    [146] F R Tan, M I Saidaminov, H R Tan et al. Dual coordination of Ti and Pb using bilinkable ligands improves perovskite solar cell performance and stability. Adv Funct Mater, 30, 2005155(2020).

    [147] H M Yi, D Wang, M A Mahmud et al. Bilayer SnO2 as electron transport layer for highly efficient perovskite solar cells. ACS Appl Energy Mater, 1, 6027(2018).

    [148] V M Le Corre, E A Duijnstee, O El Tambouli et al. Revealing charge carrier mobility and defect densities in metal halide perovskites via space-charge-limited current measurements. ACS Energy Lett, 6, 1087(2021).

    [149] M T Khan, A Almohammedi, S Kazim et al. Electrical methods to elucidate charge transport in hybrid perovskites thin films and devices. Chem Rec, 20, 452(2020).

    [150] N Liu, P Liu, H Zhou et al. Understanding the defect properties of quasi-2D halide perovskites for photovoltaic applications. J Phys Chem Lett, 11, 3521(2020).

    [151] D Shi, V Adinolfi, R Comin et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science, 347, 519(2015).

    [152] P C Zhu, S Gu, X Luo et al. Simultaneous contact and grain-boundary passivation in planar perovskite solar cells using SnO2-KCl composite electron transport layer. Adv Energy Mater, 10, 1903083(2020).

    [153] M U Rothmann, W Li, J Etheridge et al. Microstructural characterisations of perovskite solar cells - from grains to interfaces: Techniques, features, and challenges. Adv Energy Mater, 7, 1700912(2017).

    [154] N Klein-Kedem, D Cahen, G Hodes. Effects of light and electron beam irradiation on halide perovskites and their solar cells. Acc Chem Res, 49, 347(2016).

    [155] E Edri, S Kirmayer, S Mukhopadhyay et al. Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3–xClx perovskite solar cells. Nat Commun, 5, 3461(2014).

    [156] R D Fan, Y Huang, L G Wang et al. The progress of interface design in perovskite-based solar cells. Adv Energy Mater, 6, 1600460(2016).

    [157] E Edri, S Kirmayer, A Henning et al. Why lead methylammonium tri-iodide perovskite-based solar cells require a mesoporous electron transporting scaffold (but not necessarily a hole conductor). Nano Lett, 14, 1000(2014).

    [158] W S Yang, B W Park, E H Jung et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science, 356, 1376(2017).

    [159] J J Shi, X Xu, D M Li et al. Interfaces in perovskite solar cells. Small, 11, 2472(2015).

    [160] R Wang, J Xue, K L Wang et al. Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. Science, 366, 1509(2019).

    Wanlong Wang, Dongyang Zhang, Rong Liu, Deepak Thrithamarassery Gangadharan, Furui Tan, Makhsud I. Saidaminov. Characterization of interfaces: Lessons from the past for the future of perovskite solar cells[J]. Journal of Semiconductors, 2022, 43(5): 051202
    Download Citation