• Laser & Optoelectronics Progress
  • Vol. 57, Issue 9, 090001 (2020)
Jun Kang1、*, Ziruo Cui1、2、**, Ping Zhu1, qi Gao1, Ailin Guo1, Haidong Zhu1, Qingwei Yang1, Meizhi Sun1, Xinglong Xie1, and Jianqiang Zhu1
Author Affiliations
  • 1National Laboratory on High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Center of Materials Science and Optoeletronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/LOP57.090001 Cite this Article Set citation alerts
    Jun Kang, Ziruo Cui, Ping Zhu, qi Gao, Ailin Guo, Haidong Zhu, Qingwei Yang, Meizhi Sun, Xinglong Xie, Jianqiang Zhu. Research Progress of Achromatic Technology in Ultra-Short and Ultra-Intense Laser Facility[J]. Laser & Optoelectronics Progress, 2020, 57(9): 090001 Copy Citation Text show less
    References

    [1] Zamfir N V. Nuclear physics with 10 PW laser beams at extreme light infrastructure-nuclear physics (ELI-NP)[J]. The European Physical Journal Special Topics, 223, 1221-1227(2014).

    [2] ChériauxG, GiambrunoF, FreéneauxA, et al.Apollon-10P: status and implementation[C]∥Light at Extreme Intensities, November 14-18, 2011, Szeged, Hungary. Melville NY: AIP Publishing, 2012, 1462: 78- 83.

    [3] Hernandez-Gomez C, Blake S P, Chekhlov O et al. The Vulcan 10 PW project[J]. Journal of Physics: Conference Series, 244, 032006(2010).

    [4] Shaykin A A, Poteomkin A K, Sergeev A M et al. Compact 0.56 petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals[J]. Laser Physics Letters, 4, 421-427(2007).

    [5] Bahk S W, Rousseau P, Planchon T A et al. Generation and characterization of the highest laser intensities (10 22 W/cm 2)[J]. Optics Letters, 29, 2837-2839(2004).

    [6] Tabak M, Hammer J, Glinsky M E et al. Ignition and high gain with ultrapowerful lasers[J]. Physics of Plasmas, 1, 1626-1634(1994).

    [7] Edwards M J. MacKinnon A J, Zweiback J, et al. Investigation of ultrafast laser-driven radiative blast waves[J]. Physical Review Letters, 87, 085004(2001).

    [8] Tajima T, Mourou G. Zettawatt-exawatt lasers and their applications in ultrastrong-field physics: high energy front[J]. Reviews of Modern Physics, 5, 419-426(2001).

    [9] Zhu J Q, Xie X L, Yang Q W et al. Introduction to SG-II 5 PW laser facility. [C]∥ 2016 Conference on Lasers and Electro-Optics, June 5-10, 2016, San Jose, CA, USA. New York: IEEE, 1-2(2016).

    [10] Li W Q, Gan Z B, Yu L H et al. 339 J high-energy Ti: sapphire chirped-pulse amplifier for 10 PW laser facility[J]. Optics Letters, 43, 5681-5684(2018).

    [11] Zeng X M, Zhou K N, Zuo Y L et al. Multi-petawatt laser facility fully based on optical parametric chirped-pulse amplification[J]. Optics Letters, 42, 2014-2017(2017).

    [12] Yanovsky V, Chvykov V, Kalinchenko G et al. Ultra-high intensity-high contrast 300-TW laser at 0.1 Hz repetition rate[J]. Optics Express, 16, 2109-2114(2008).

    [13] Leng Y X. Shanghai superintense ultrafast laser facility[J]. Chinese Journal of Lasers, 46, 0100001(2019).

    [14] Cui Z R, Kang J, Guo A L et al. Dynamic chromatic aberration pre-compensation scheme for ultrashort petawatt laser systems[J]. Optics Express, 27, 16812-16822(2019).

    [15] Simmons W, Guch S, Rainer F et al. A high energy spatial filter for removal of small scale beam instabilities in high power solid state lasers[J]. IEEE Journal of Quantum Electronics, 11, 852-852(1975).

    [16] Hunt J T, Renard P A, Simmons W W. Improved performance of fusion lasers using the imaging properties of multiple spatial filters[J]. Applied Optics, 16, 779-782(1977).

    [17] Spaeth M L, Manes K R, Kalantar D H et al. Description of the NIF laser[J]. Fusion Science and Technology, 69, 25-145(2016).

    [18] Xia L. Research of laser-transmission technique of high-energy ultrashort pulse-laser systems[D]. Shanghai: China Academy of Engineering Physics, 1-30(2001).

    [19] Born M, Wolf E[M]. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, 257-260(1980).

    [20] Bromage J, Zuegel J D, Bahk S W. Offner radial group delay compensator for ultra-broadband laser beam transport[J]. Optics Letters, 39, 1081(2014).

    [21] Planchon T A, Ferré S, Hamoniaux G et al. Experimental evidence of 25-fs laser pulse distortion in singlet beam expanders[J]. Optics Letters, 29, 2300-2302(2004).

    [22] Kempe M, Rudolph W. Femtosecond pulses in the focal region of lenses[J]. Physical Review A, 48, 4721-4729(1993).

    [23] Jeong T M, Ko D K, Lee J. Deformation of thefocal spot of an ultrashort high-power laser pulse due to chromatic aberration by a beam expander[J]. Journal of the Korean Physical Society, 52, 1767-1773(2008).

    [24] Zhu P, Xie X L, Jiao Z Y et al. Influence of wave-front error on temporal signal-to-noise ratio in large aperture ultrashort pulse focusing system[J]. Acta Optica Sinica, 34, 1032001(2014).

    [25] Cui Z R, Kang J, Xie X L et al. Compensation for chromatic aberration in femtosecond petawatt laser systems based on zoom image transfer[J]. Chinese Journal of Lasers, 46, 0905001(2019).

    [26] Kempe M, Rudolph W. Impact of chromatic and spherical aberration on the focusing of ultrashort light pulses by lenses[J]. Optics Letters, 18, 137-139(1993).

    [27] Bor Z. Distortion of femtosecond laser pulses in lenses[J]. Optics Letters, 14, 119-121(1989).

    [28] Heuck H M, Neumayer P, Kühl T et al. Chromatic aberration in petawatt-class lasers[J]. Applied Physics B, 84, 421-428(2006).

    [29] Bor Z. Distortion of femtosecond laser pulses in lenses and lens systems[J]. Journal of Modern Optics, 35, 1907-1918(1988).

    [30] Zhu P, Xie X L, Zhu J Q. Influence of chromatic aberration from spatial filters for 5 PW ultra-short pulses on temporal contrast[J]. Acta Optica Sinica, 37, 0914005(2017).

    [31] Cui Z R, Xie X L, Kang J et al. Measurement and compensation for the chromatic aberration of SG-II 5 PW laser system[J]. Proceedings of SPIE, 10964, 109644C(2018).

    [32] Malacara D, Malacara Z. Achromatic aberration corrections with only one glass[J]. Proceedings of SPIE, 2263, 81-87(1994).

    [33] Katyl R H. Compensating optical systems part 3: achromatic Fourier transformation[J]. Applied Optics, 11, 1255-1260(1972).

    [34] Fang Y C, Tsai C M. MacDonald J, et al. Eliminating chromatic aberration in Gauss-type lens design using a novel genetic algorithm[J]. Applied Optics, 46, 2401-2410(2007).

    [35] Gaul E, Toncian T, Martinez M et al. Improved pulse contrast on the Texas petawatt laser[J]. Journal of Physics: Conference Series, 717, 012092(2016).

    [36] Gaul E, Martinez M, Dyer G et al. Beam distortion effects upon focusing an ultrashort petawatt laser pulse to greater than 10 22 W/cm 2[J]. Optics Letters, 44, 2764-2767(2019).

    [37] Pirozhkov A S, Fukuda Y, Nishiuchi M et al. Approaching the diffraction-limited, bandwidth-limited Petawatt[J]. Optics Express, 25, 20486-20501(2017).

    [38] Kiriyama H, Pirozhkov A S, Nishiuchi M et al. High-contrast high-intensity repetitive petawatt laser[J]. Optics Letters, 43, 2595-2598(2018).

    [39] Hello P, Man C N. Design of a low-loss off-axis beam expander[J]. Applied Optics, 35, 2534-2536(1996).

    [40] Gaul E W, Martinez M, Blakeney J et al. Demonstration of a 1.1 petawatt laser based on a hybrid optical parametric chirped pulse amplification/mixed Nd: glass amplifier[J]. Applied Optics, 49, 1676-1681(2010).

    [41] Bromage J, Bahk S W, Begishev I A et al. Technology development for ultraintense all-OPCPA systems[J]. High Power Laser Science and Engineering, 7, e4(2019).

    [42] Wu F X, Xu Y, Yu L P et al. Measurement and compensation schemes for the pulse front distortion of ultra-intensity ultra-short laser pulses[J]. Proceedings of SPIE, 10016, 1001610(2016).

    [43] Guo Z, Yu L H, Wang J Y et al. Improvement of the focusing ability by double deformable mirrors for 10-PW-level Ti: sapphire chirped pulse amplification laser system[J]. Optics Express, 26, 26776-26786(2018).

    [44] Zhou K N, Huang X J, Zeng X M et al. Improvement of focusing performance for a multi-petawatt OPCPA laser facility[J]. Laser Physics, 28, 125301-125307(2018).

    [45] Wang J Y, Guo Z, Yu L H et al. Wavefront evolution and analysis of 10-petawatt laser system[J]. Chinese Journal of Lasers, 46, 0801006(2019).

    [46] Stone T, George N. Hybrid diffractive-refractive lenses and achromats[J]. Applied Optics, 27, 2960-2971(1988).

    [47] Madjidi-Zolbanine H, Froehly C. Holographic correction of both chromatic and spherical aberrations of single glass lenses[J]. Applied Optics, 18, 2385-2893(1979).

    [48] Néauport J, Blanchot N, Rouyer C et al. Chromatism compensation of the PETAL multi petawatt high-energy laser[J]. Applied Optics, 46, 1568-1574(2007).

    [49] Kessler T J, Huang H, Weiner D. Diffractive optics for compensation of axial chromatic aberration in high-energy short-pulse laser. [C]∥International Conference on Ultrahigh Intensity Lasers, September 25-29, 2006, Cassis, France., E14898-E14905(2006).

    [50] Xie X D, Zhu Q H, Zhou K N et al. Design of diffractive optical elements for chromatic aberration correction in high-energy petawatt laser system[J]. Acta Optica Sinica, 30, 142-146(2010).

    [51] Petrov G M, Mcguffey C. Thomas A G R, et al. Proton acceleration from high-contrast short pulse lasers interacting with sub-micron thin foils[J]. Journal of Applied Physics, 119, 053302(2016).

    Jun Kang, Ziruo Cui, Ping Zhu, qi Gao, Ailin Guo, Haidong Zhu, Qingwei Yang, Meizhi Sun, Xinglong Xie, Jianqiang Zhu. Research Progress of Achromatic Technology in Ultra-Short and Ultra-Intense Laser Facility[J]. Laser & Optoelectronics Progress, 2020, 57(9): 090001
    Download Citation