• Journal of Semiconductors
  • Vol. 42, Issue 5, 051801 (2021)
Xiaolong Cai1、2、3, Chenglin Du2、3, Zixuan Sun2、3, Ran Ye2、3, Haijun Liu2, Yu Zhang2, Xiangyang Duan2, and Hai Lu1
Author Affiliations
  • 1School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 China
  • 2Architecture Team, Wireless Product Planning Department, ZTE Corporation, Nanjing 210012, China
  • 3State Key Laboratory of Mobile Network and Mobile Multimedia Technology, Shenzhen 518057, China
  • show less
    DOI: 10.1088/1674-4926/42/5/051801 Cite this Article
    Xiaolong Cai, Chenglin Du, Zixuan Sun, Ran Ye, Haijun Liu, Yu Zhang, Xiangyang Duan, Hai Lu. Recent progress of physical failure analysis of GaN HEMTs[J]. Journal of Semiconductors, 2021, 42(5): 051801 Copy Citation Text show less
    References

    [1] M H Mi, X H Ma, L Yang et al. Record combination fmax·Vbr of 25 THz·V in AlGaN/GaN HEMT with plasma treatment. AIP Adv, 9, 045212(2019).

    [2] D K Panda, G Amarnath, T R Lenka et al. Small-signal model parameter extraction of E-mode N-polar GaN MOS-HEMT using optimization algorithms and its comparison. J Semicond, 39, 64(2018).

    [3] X Huang, R Fang, C Yang et al. Steep-slope field-effect transistors with AlGaN/GaN HEMT and oxide-based threshold switching device. Nanotechnology, 30, 215201(2019).

    [4]

    [5] A Taylor, J Lu, L Zhu et al. Comparison of SiC MOSFET-based and GaN HEMT-based high-efficiency high-power-density 7.2 kW EV battery chargers. Power Electron, 11, 1849(2018).

    [6] R Faraji, H Farzanehfard, G Kampitsis et al. Fully soft-switched high step-up non-isolated three-port DC-DC converter using GaN HEMTs. IEEE Trans Ind Electron, 67, 8371(2020).

    [7] X Chen, W Zhai, J Zhang et al. FEM thermal analysis of high power GaN-on-diamond HEMTs. J Semicond, 39, 104005(2018).

    [8]

    [9]

    [10]

    [11] I Rossetto, M Meneghini, A Tajalli et al. Evidence of hot-electron effects during hard switching of AlGaN/GaN HEMTs. IEEE Trans Electron Devices, 64, 3734(2017).

    [12] M M Bajo, H Sun, M J Uren et al. Time evolution of off-state degradation of AlGaN/GaN high electron mobility transistors. Appl Phys Lett, 104, 223506(2014).

    [13] T Luo, A Khursheed. Elemental identification using transmitted and backscattered electrons in an SEM. Phys Procedia, 1, 155(2008).

    [14]

    [15] A Gkanatsiou, C B Lioutas, N Frangis et al. Influence of 4H-SiC substrate miscut on the epitaxy and microstructure of AlGaN/GaN heterostructures. Mat Sci Semicond Proc, 91, 159(2019).

    [16] Y Wu, C Y Chen, J A Del Alamo. Electrical and structural degradation of GaN high electron mobility transistors under high-power and high-temperature direct current stress. J Appl Phys, 117, 025707(2015).

    [17] B Wang, Z Islam, A Haque et al. In situ transmission electron microscopy of transistor operation and failure. Nanotechnology, 29, 31LT01(2018).

    [18] D Marcon, G Meneghesso, T L Wu et al. Reliability analysis of permanent degradations on AlGaN/GaN HEMTs. IEEE Trans Electron Devices, 60, 3132(2013).

    [19] Z Islam, A Haque, N Glavin. Real-time visualization of GaN/AlGaN high electron mobility transistor failure at off-state. Appl Phys Lett, 113, 183102(2018).

    [20] D D Wang, Y M Huang, P K Tan et al. Two planar polishing methods by using FIB technique: Toward ultimate top-down delayering for failure analysis. AIP Adv, 5, 127101(2015).

    [21] K Kumakura, T Makimoto. Growth of GaN on sapphire substrates using novel buffer layers of ECR-plasma-sputtered Al2O3/graded-AlON/AlN/Al2O3. J Cryst Growth, 292, 155(2006).

    [22] I Rossetto, M Meneghini, M Barbato et al. Demonstration of field- and power-dependent ESD failure in AlGaN/GaN RF HEMTs. IEEE Trans Electron Devices, 62, 2830(2015).

    [23]

    [24]

    [25]

    [26] E Canato, M Meneghini, A Nardo et al. ESD-failure of E-mode GaN HEMTs: Role of device geometry and charge trapping. Microelectron Reliab, 100/101, 113334(2019).

    [27] B Shankar, S Raghavan, M Shrivastava. ESD reliability of AlGaN/GaN HEMT technology. IEEE Trans Electron Devices, 66, 3756(2019).

    [28] B Shankar, S Raghavan, M Shrivastava. Distinct failure modes of AlGaN/GaN HEMTs under ESD conditions. IEEE Trans Electron Devices, 67, 1567(2020).

    [29] F Gao, S C Tan, J A Del Alamo et al. Impact of water-assisted electrochemical reactions on the off-state degradation of AlGaN/GaN HEMTs. IEEE Trans Electron Devices, 61, 437(2014).

    [30] I Rossetto, M Meneghini, S Pandey et al. Field-related failure of GaN-on-Si HEMTs: Dependence on device geometry and passivation. IEEE Trans Electron Devices, 64, 73(2017).

    [31] M Dammann, M Baeumler, V Polyakov et al. Reliability of 100 nm AlGaN/GaN HEMTs for mm-wave applications. Microelectron Reliab, 76/77, 292(2017).

    [32] Y Sin, D Veksler, J Bonsall et al. Electrical and structural characteristics of aged RF GaN HEMTs and irradiated high-power GaN HEMTs with protons and heavy ions. Gallium Nitride Materials and Devices XIV, 10918(2019).

    [33] P G Whiting, N G Rudawski, M R Holzworth et al. Nanocrack formation in AlGaN/GaN high electron mobility transistors utilizing Ti/Al/Ni/Au ohmic contacts. Microelectron Reliab, 70, 41(2017).

    [34] K Mazumdar, S Kala, A Ghosal et al. Nanocrack formation due to inverse piezoelectric effect in AlGaN/GaN HEMT. Superlattice Microst, 125, 120(2019).

    [35] Q Zhu, X Ma, B Hou et al. Investigation of inverse piezoelectric effect and trap effect in AlGaN/GaN HEMTs under reverse-bias step stress at cryogenic temperature. IEEE Access, 8, 35520(2020).

    [36] S Y Liu, S Li, C Zhang et al. Single pulse unclamped-inductive-switching induced failure and analysis for 650 V p-GaN HEMT. IEEE Trans Power Electr, 35, 11328(2020).

    [37] F Temcamani, J B Fonder, O Latry et al. Electrical and physical analysis of thermal degradations of AlGaN/GaN HEMT under radar-type operating life. IEEE Trans Microw Theory, 64, 756(2016).

    [38] M Mocanu, C Unger, M Pfost et al. Thermal stability and failure mechanism of Schottky gate AlGaN/GaN HEMTs. IEEE Trans Electron Devices, 64, 848(2017).

    [39]

    [40] R Jos. Reverse Schottky gate current in AlGaN-GaN high-electron-mobility-transistors. J Appl Phys, 112, 94508(2012).

    [41] J H Shin, J Park, S Y Jang et al. Metal induced inhomogeneous Schottky barrier height in AlGaN/GaN Schottky diode. Appl Phys Lett, 102, 243505(2013).

    [42] T Nagahisa, H Ichijoh, T Suzuki et al. Robust 600 V GaN high electron mobility transistor technology on GaN-on-Si with 400 V, 5 μs load-short-circuit withstand capability. Jpn J Appl Phys, 55, 04EG01(2016).

    [43] L Zhou, Z W San, Y J Hua et al. Investigation on failure mechanisms of GaN HEMT caused by high-power microwave (HPM) pulses. IEEE Trans Electromagn C, 59, 902(2017).

    [44] J Biener, A M Hodge, A V Hamza et al. Nanoporous Au: A high yield strength material. J Appl Phys, 97, 24301(2005).

    [45] P S Alexopoulos. Mechanical properties of thin films. Annu Rev Mater Res, 20, 391(1990).

    [46] V Sangwan, C M Tan, D Kapoor et al. Electromagnetic induced failure in GaN-HEMT high-frequency power amplifier. IEEE Trans Ind Electron, 67, 5708(2020).

    [47] Z F Lei, H X Guo, M Tang et al. Degradation mechanisms of AlGaN/GaN HEMTs under 800 MeV Bi ions irradiation. Microelectron Reliab, 80, 312(2018).

    [48] P Hu, J Liu, S Zhang et al. Degradation in AlGaN/GaN HEMTs irradiated with swift heavy ions: Role of latent tracks. Nucl Instrum Meth B, 430, 59(2018).

    [49] Z Islam, A L Paoletta, A M Monterrosa et al. Heavy ion irradiation effects on GaN/AlGaN high electron mobility transistor failure at off-state. Microelectron Reliab, 102, 113493(2019).

    [50] K Nakamura, H Hanawa, K Horio et al. Analysis of breakdown voltages in AlGaN/GaN HEMTs with low-κ/high-κ double passivation layers. IEEE Trans Device Mat Res, 19, 298(2019).

    [51] Y T Shi, H Lu, W Z Xu et al. High-κ HfO2 based AlGaN/GaN MIS-HEMTs with Y2O3 interfacial layer for high gate controllability and interface quality. IEEE J Electron Devices, 8, 15(2020).

    [52] H Hanawa, H Onodera, A Nakajima et al. Numerical analysis of breakdown voltage enhancement in AlGaN/GaN HEMTs with a high-κ passivation layer. IEEE Trans Electron Devices, 61, 769(2014).

    [53] L Cheng, W Xu, D Pan et al. Gate-first process compatible, high-quality in situ SiNx for surface passivation and gate dielectrics in AlGaN/GaN MISHEMTs. J Phys D, 52, 305105(2019).

    [54]

    [55] C Zeng, W Xu, Y Xia et al. Investigations of the gate instability characteristics in Schottky/ohmic type p-GaN gate normally-off AlGaN/GaN HEMTs. Appl Phys Express, 12, 121005(2019).

    [56] A S A Fletcher, D Nirmal, J Ajayan et al. Analysis of AlGaN/GaN HEMT using discrete field plate technique for high power and high frequency applications. AEU-Int J Electron C, 99, 325(2019).

    [57] K Narang, R K Bag, V K Singh et al. Improvement in surface morphology and 2DEG properties of AlGaN/GaN HEMT. J Alloy Compd, 815, 152283(2020).

    [58] M Wosko, T Szymanski, B Paszkiewicz et al. MOVPE growth conditions optimization for AlGaN/GaN/Si heterostructures with SiN and LT-AlN interlayers designed for HEMT applications. J Mater Sci-Mater El, 30, 4111(2019).

    [59] D Jana, A Chatterjee, T K Sharma. Confirmation of the compensation of unintentional donors in AlGaN/GaN HEMT structures by Mg-doping during initial growth of GaN buffer layer. J Lumin, 219, 116904(2019).

    [60] M Borga, M Meneghini, D Benazzi et al. Buffer breakdown in GaN-on-Si HEMTs: A comprehensive study based on a sequential growth experiment. Microelectron Reliab, 100/101, 113461(2019).

    Xiaolong Cai, Chenglin Du, Zixuan Sun, Ran Ye, Haijun Liu, Yu Zhang, Xiangyang Duan, Hai Lu. Recent progress of physical failure analysis of GaN HEMTs[J]. Journal of Semiconductors, 2021, 42(5): 051801
    Download Citation