• Journal of Semiconductors
  • Vol. 43, Issue 6, 062802 (2022)
Yitian Bao1, Xiaorui Wang1, and Shijie Xu1、2
Author Affiliations
  • 1Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China
  • 2Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
  • show less
    DOI: 10.1088/1674-4926/43/6/062802 Cite this Article
    Yitian Bao, Xiaorui Wang, Shijie Xu. Sub-bandgap refractive indexes and optical properties of Si-doped β-Ga2O3 semiconductor thin films[J]. Journal of Semiconductors, 2022, 43(6): 062802 Copy Citation Text show less
    References

    [1] S J Pearton, J Yang, IV P H Cary et al. A review of Ga2O3 materials, processing, and device. Appl Phys Rev, 5, 011301(2018).

    [2] H F Mohamed, C Xia, Q Sai et al. Growth and fundamentals of bulk β-Ga2O3 single crystals. J Semicond, 40, 011801(2019).

    [3] F Zhang, M Arita, X Wang et al. Toward controlling the carrier density of Si doped Ga2O3 films by pulsed laser deposition. Appl Phys Lett, 109, 102105(2016).

    [4] D Hu, Y Wang, S Zhuang et al. Surface morphology evolution and optoelectronic properties of heteroepitaxial Si-doped β-Ga2O3 thin films grown by metal-organic chemical vapor deposition. Ceram Internation, 44, 3122(2018).

    [5] S J Pearton, F Ren, M Tadjer et al. Perspective: Ga2O3 for ultra-high power rectifiers and MOSFETS. J Appl Phys, 124, 220901(2018).

    [6] J Yang, S Ahn, F Ren et al. High breakdown voltage (−201) β-Ga2O3 Schottky rectifiers. IEEE Electron Device Lett, 38, 906(2017).

    [7] B Wang, M Xiao, X Yan et al. High-voltage vertical Ga2O3 power rectifiers operational at high temperatures up to 600 K. Appl Phys Lett, 115, 263503(2019).

    [8] K D Chabak, J P McCandless, N A Moser et al. Recessed-gate enhancement-mode β-Ga2O3 MOSFETs. IEEE Electron Device Lett, 39, 67(2018).

    [9] A J Green, K D Chabak, M Baldini et al. β-Ga2O3 MOSFETs for radio frequency operation. IEEE Electron Device Lett, 38, 790(2017).

    [10] N Moser, J McCandless, A Crespo et al. Ge-doped β-Ga2O3 MOSFETs. IEEE Electron Device Lett, 38, 775(2017).

    [11] S Oh, C K Kim, J Kim. High responsivity β-Ga2O3 metal–semiconductor–metal solar-blind photodetectors with ultraviolet transparent graphene electrodes. ACS Photon, 5, 1123(2018).

    [12] Y C Chen, Y J Lu, Q Liu et al. Ga2O3 photodetector arrays for solar-blind imaging. J Mater Chem C, 7, 2557(2019).

    [13] J Xu, W Zheng, F Huang. Gallium oxide solar-blind ultraviolet photodetectors: a review. J Mater Chem C, 7, 8753(2019).

    [14] Z Liu, X Wang, Y Liu et al. A high-performance ultraviolet solar-blind photodetector based on a β-Ga2O3 Schottky photodiode. J Mater Chem C, 7, 13920(2019).

    [15] L Zhang, X Xiu, Y Li et al. Solar-blind ultraviolet photodetector based on vertically aligned single-crystalline β-Ga2O3 nanowire arrays. Nanophotonics, 9, 0295(2020).

    [16] C Xie, X Lu, Y Liang et al. Patterned growth of β-Ga2O3 thin films for solar-blind deep-ultraviolet photodetectors array and optical imaging application. J Mater Sci Technol, 72, 189(2021).

    [17] M Rebien, W Henrion, M Hong et al. Optical properties of gallium oxide thin films. Appl Phys Lett, 81, 250(2002).

    [18] Y Bao, S Xu. Variable-period oscillations in optical spectra in sub-bandgap long wavelength region: Signatures of new dispersion of refractive index. J Phys D, 54, 155102(2021).

    [19] I Bhaumik, R Bhatt, S Ganesamoorthy et al. Temperature-dependent index of refraction of monoclinic Ga2O3 single crystal. Appl Opt, 50, 6006(2011).

    [20] N Ueda, H Hosono, R Waseda et al. Anisotropy of electrical and optical properties in β-Ga2O3 single crystals. Appl Phys Lett, 71, 933(1997).

    [21] M Hilfiker, U Kilic, A Mock et al. Dielectric function tensor (1.5 eV to 9.0 eV), anisotropy, and band to band transitions of monoclinic β-(AlxGa1–x)2O3 (x ≤ 0.21) films. Appl Phys Lett, 114, 231901(2019).

    [22] J Furthmüller, F Bechstedt. Quasiparticle bands and spectra of Ga2O3 polymorphs. Phys Rev B, 93, 115204(2016).

    [23] J Yan, C Qu. Electronic structure and optical properties of F-doped-Ga2O3 from first principles calculations. J Semicond, 37, 042002(2016).

    [24] A Mock, R Korlacki, C Briley et al. Band-to-band transitions, selection rules, effective mass, and excitonic contributions in monoclinic β-Ga2O3. Phys Rev B, 96, 245205(2017).

    [25] Z Galazka. β-Ga2O3 for wide-bandgap electronics and optoelectronics. Semicond Sci Technol, 33, 113001(2018).

    [26] D Redfield. Effect of defect fields on the optical absorption edge. Phys Rev, 130, 916(1963).

    [27] K Tharmalingam. Optical absorption in the presence of a uniform field. Phys Rev, 130, 2204(1963).

    [28] Y Bao, S Xu. Dopant-induced electric fields and their influence on the band-edge absorption of GaN. ACS Omega, 4, 15401(2019).

    [29] S Rafique, L Han, S Mou et al. Temperature and doping concentration dependence of the energy band gap in β-Ga2O3 thin films grown on sapphire. Opt Mater Express, 7, 3561(2017).

    [30] R Subrina, L Han, H Zhao. Synthesis of wide bandgap Ga2O3 (Eg ~ 4.6–4.7 eV) thin films on sapphire by low pressure chemical vapor deposition. Phys Status Solidi A, 213, 1002(2016).

    [31] J Zhang, J Shi, D C Qi et al. Recent progress on the electronic structure, defect, and doping properties of Ga2O3. APL Mater, 8, 020906(2020).

    [32] H Peelaers, C G Van de Walle. Sub-band-gap absorption in Ga2O3. Appl Phys Lett, 111, 182104(2017).

    [33] F Bechstedt, J Furthmüller. Influence of screening dynamics on excitons in Ga2O3 polymorphs. Appl Phys Lett, 114, 122101(2019).

    [34] R Guo, J Su, H Yuan et al. Surface functionalization modulates the structural and optoelectronic properties of two-dimensional Ga2O3. Mater Today Phys, 12, 100192(2020).

    [35] S L Shi, S J Xu. Determination of effective mass of heavy hole from phonon-assisted excitonic luminescence spectra in ZnO. J Appl Phys, 109, 053510(2011).

    [36] X Wang, D Yu, S Xu. Determination of absorption coefficients and Urbach tail depth of ZnO below the bandgap with two-photon photoluminescence. Opt Express, 28, 13817(2020).

    [37] H G Ye, Z C Su, F Tang et al. Role of free electrons in phosphorescence in n-type wide bandgap semiconductors. Phys Chem Chem Phys, 19, 30332(2017).

    [38] H Ye, Z Su, F Tang et al. Probing defects in ZnO by persistent phosphorescence. Opto-Electron Adv, 1, 180011(2018).

    Yitian Bao, Xiaorui Wang, Shijie Xu. Sub-bandgap refractive indexes and optical properties of Si-doped β-Ga2O3 semiconductor thin films[J]. Journal of Semiconductors, 2022, 43(6): 062802
    Download Citation