• Journal of Semiconductors
  • Vol. 43, Issue 6, 062802 (2022)
Yitian Bao1, Xiaorui Wang1, and Shijie Xu1、2
Author Affiliations
  • 1Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China
  • 2Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
  • show less
    DOI: 10.1088/1674-4926/43/6/062802 Cite this Article
    Yitian Bao, Xiaorui Wang, Shijie Xu. Sub-bandgap refractive indexes and optical properties of Si-doped β-Ga2O3 semiconductor thin films[J]. Journal of Semiconductors, 2022, 43(6): 062802 Copy Citation Text show less

    Abstract

    In this article, we present a theoretical study on the sub-bandgap refractive indexes and optical properties of Si-doped β-Ga2O3 thin films based on newly developed models. The measured sub-bandgap refractive indexes of β-Ga2O3 thin film are explained well with the new model, leading to the determination of an explicit analytical dispersion of refractive indexes for photon energy below an effective optical bandgap energy of 4.952 eV for the β-Ga2O3 thin film. Then, the oscillatory structures in long wavelength regions in experimental transmission spectra of Si-doped β-Ga2O3 thin films with different Si doping concentrations are quantitively interpreted utilizing the determined sub-bandgap refractive index dispersion. Meanwhile, effective optical bandgap values of Si-doped β-Ga2O3 thin films are further determined and are found to decrease with increasing the Si doping concentration as expectedly. In addition, the sub-bandgap absorption coefficients of Si-doped β-Ga2O3 thin film are calculated under the frame of the Franz–Keldysh mechanism due to the electric field effect of ionized Si impurities. The theoretical absorption coefficients agree with the available experimental data. These key parameters obtained in the present study may enrich the present understanding of the sub-bandgap refractive indexes and optical properties of impurity-doped β-Ga2O3 thin films.
    $ n\left(E\right)=n_0+\frac{{E}_{1}-\sqrt{{E}_{2}\left({E}_{\mathrm{c}}-E\right)}}{E} , $ (1)

    View in Article

    $ {I}_{\mathrm{t}}={I}_{\mathrm{t}0}+{I}_{\mathrm{t}1}{\rm e}^{-\frac{8\pi dkE}{hc}}+2\sqrt{{I}_{\mathrm{t}0}{I}_{\mathrm{t}1}}{\rm e}^{-\frac{4\pi dkE}{hc}}\mathrm{cos}\left[\frac{4\pi d}{hc}\left({E}_{1}-\sqrt{{E}_{2}\left({E}_{\mathrm{c}}-E\right)}\right)\right] , $ (2)

    View in Article

    $ \alpha \left(\omega ,F\right)=R\left(\omega \right)\frac{{\omega }_{\mathrm{F}}^{3/2}}{8\pi \left({\omega }_{\mathrm{g}}-\omega \right)}\mathrm{exp}\left[-\frac{4}{3}{\left(\frac{{\omega }_{\mathrm{g}}-\omega }{{\omega }_{\mathrm{F}}}\right)}^{3/2}\right] , $ (3)

    View in Article

    $ {\omega }_{\mathrm{F}}={\left(\frac{{e}^{2}{F}^{2}}{12{\hslash }\mu }\right)}^{1/3} , $ (4)

    View in Article

    Yitian Bao, Xiaorui Wang, Shijie Xu. Sub-bandgap refractive indexes and optical properties of Si-doped β-Ga2O3 semiconductor thin films[J]. Journal of Semiconductors, 2022, 43(6): 062802
    Download Citation