• Chinese Optics Letters
  • Vol. 19, Issue 3, 031401 (2021)
Zixin Yang1、4, Lili Han1, Qi Yang1、3、*, Xianghe Ren1、**, Syed Zaheer Ud Din1, Xiaoyan Zhang2、***, Jiancai Leng4, Jiabao Zhang1、4, Baitao Zhang3, Kejian Yang3, Jingliang He3, Chunlong Li5, and Jun Wang6
Author Affiliations
  • 1International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250300, China
  • 2Department of Chemistry, Shanghai University, Shanghai 200444, China
  • 3State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
  • 4School of Electronic and Information Engineering (Department of Physics), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250300, China
  • 5State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250300, China
  • 6Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • show less
    DOI: 10.3788/COL202119.031401 Cite this Article Set citation alerts
    Zixin Yang, Lili Han, Qi Yang, Xianghe Ren, Syed Zaheer Ud Din, Xiaoyan Zhang, Jiancai Leng, Jiabao Zhang, Baitao Zhang, Kejian Yang, Jingliang He, Chunlong Li, Jun Wang. Two-dimensional tellurium saturable absorber for ultrafast solid-state laser[J]. Chinese Optics Letters, 2021, 19(3): 031401 Copy Citation Text show less
    References

    [1] C. Xie, C. Mak, X. Tao, F. Yan. Photodetectors based on two dimensional layered materials beyond graphene. Adv. Funct. Mater., 27, 1603886(2017).

    [2] Y. Zhang, J. Ye, Y. Matsuhashi, Y. Iwasa. Ambipolar MoS2 thin flake transistors. Nano Lett., 12, 1136(2012).

    [3] B. Guo, Q. L. Xiao, S. H. Wang, H. Zhang. 2D layered materials: synthesis, nonlinear optical properties, and device applications. Laser Photon. Rev., 13, 1800327(2019).

    [4] Y. Liu, Y. Wang, J. Liu, C. Liu. High power ultrafast Nd:YVO4 laser mode locked by single wall carbon nanotube absorber. Appl. Phys. B, 104, 835(2011).

    [5] N. Cui, F. Zhang, Y. Q. Zhao, Y. P. Yao, Q. G. Wang, L. L. Dong, H. Y. Zhang, S. D. Liu, J. L. Xu, H. Zhang. The visible nonlinear optical properties and passively Q-switched laser application of layered PtSe2 material. Nanoscale, 12, 1061(2020).

    [6] J. L. Xu, X. L. Li, Y. Z. Wu, X. P. Hao, J. L. He, K. J. Yang. Graphene saturable absorber mirror for ultra-fast-pulse solid-state laser. Opt. Lett., 36, 1948(2011).

    [7] T. Q. Zhang, M. D. Wang, Y. Xue, J. L. Xu, Z. D. Xie, S. N. Zhu. Liquid metal as a broadband saturable absorber for passively Q-switched lasers. Chin. Opt. Lett., 18, 111901(2020).

    [8] Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. Shen, K. P. Loh, D. Tang. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater., 19, 3077(2009).

    [9] Y. P. Yao, N. Cui, Q. G. Wang, L. L. Dong, S. D. Liu, D. L. Sun, H.Y. Zhang, D. H. Li, B. T. Zhang, J. L. He. Highly efficient continuous-wave and ReSe2Q-switched similar to 3 µm dual-wavelength Er:YAP crystal lasers. Opt. Lett., 44, 2839(2019).

    [10] Z. X. Yang, L. L. Han, J. B. Zhang, Y. P. Zhang, F. Zhang, Z. T. Lin, X. H. Ren, Q. Yang, H. Zhang. Passively Q-switched laser using PtSe2 as saturable absorber at 1.3 µm. Infrared Phys. Techn., 104, 103155(2020).

    [11] L. L. Tao, X. W. Huang, J. S. He, Y. J. Lou, L. H. Zeng, Y. H. Li, H. Long, J. B. Li, L. Zhang, Y. H. Tsang. Vertically standing PtSe2 film: a saturable absorber for a passively mode-locked Nd:LuVO4 laser. Photon. Res., 6, 750(2018).

    [12] H. H. Xie, Z. B. Li, Z.B. Sun, J. D. Shao, X. F. Yu, Z. N. Guo, J. H. Wang, Q. L. Xiao, H. Y. Wang, Q. Q. Wang, H. Zhang, P. K. Chu. Metabolizable ultrathin Bi2Se3 nanosheets in imaging-guided photothermal therapy. Small, 12, 4136(2016).

    [13] S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, D. Y. Fan. Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material. Opt. Express, 23, 11183(2015).

    [14] B. T. Zhang, F. Lou, R. W. Zhao, J. L. He, J. Li, X. C. Su, J. Ning, K. J. Yang. Exfoliated layers of black phosphorus as saturable absorber for ultrafast solid-state laser. Opt. Lett., 40, 3691(2015).

    [15] Z. W. He, Y. Zheng, H. Y. Liu, M. K. Li, H. Lu, H. Z. Zhang, Q. L. Feng, D. Mao. Passively Q-switched cylindrical vector laser based on a black phosphorus saturable absorber. Chin. Opt. Lett., 17, 020004(2019).

    [16] P. C. Wang, Q. Yang, X. Y. Wang. Gold nanostars as the saturable absorber for a Q-switched visible solid-state laser. Appl. Opt., 58, 6733(2019).

    [17] H. T. Huang, M. Li, P. Liu, L. Jin, H. Wang, D. Y. Shen. Gold nanorods as the saturable absorber for a diode-pumped nanosecond Q-switched 2 µm solid-state laser. Opt. Lett., 41, 2700(2016).

    [18] Q. Z. Qian, N. Wang, S. Z. Zhao, G. Q. Li, T. Li, D. C. Li, K. J. Yang, J. Zang, H. Y. Ma. Gold nanorods as saturable absorbers for the passively Q-switched Nd:LLF laser at 1.34 µm. Chin. Opt. Lett., 17, 041401(2019).

    [19] C. Zhang, F. Zhang, X. W. Fan, J. M. Yang, J. Liu, H. Zhang. Passively Q-switched operation of in-band pumped Ho:YLF based on Ti3C2Tx MXene. Infrared Phys. Techn., 103, 103076(2019).

    [20] Q. Yang, X. Y. Zhang, Z. X. Yang, X. H. Ren, J. Wang, Q. D. Li, X. L. Cui, X. L. Zhu. Broadband γ-graphyne saturable absorber for Q-switched solid-state laser. Appl. Phys. Express, 12, 122006(2019).

    [21] X. Y. Feng, J. J. Liu, W. Yang, X. R. Yu, S. Z. Jiang, T. Y. Ning, J. Liu. Broadband indium tin oxide nanowire arrays as saturable absorbers for solid-state lasers. Opt. Express, 28, 1554(2020).

    [22] H. Peng, N. Kioussis, G. J. Snyder. Elemental tellurium as a chiral p-type thermoelectric material. Phys. Rev. B, 89, 195206(2014).

    [23] J. W. Liu, J. H. Zhu, C. L. Zhang, H. W. Liang, S. H. Yu. Mesostructured assemblies of ultrathin superlong tellurium nanowires and their photoconductivity. J. Am. Chem. Soc., 132, 8945(2010).

    [24] T. Lee, S. Lee, E. Lee, S. Sohn, Y. Lee, S. Lee, G. Moon, D. Kim, Y. S. Kim, J. M. Myoung, Z. L. Wang. High-power density piezoelectric energy harvesting using radially strained ultrathin trigonal tellurium nanowire assembly. Adv. Mater., 25, 2920(2013).

    [25] R. Cao, Y. Zhang, H. D. Wang, Y.H. Zeng, J. L. Zhao, L. Y. Zhang, J. Q. Li, F. X. Meng, Z. Shi, D. Y. Fan, Z. N. Guo. Solar-blind deep-ultraviolet photodetectors based on solution-synthesized quasi-2D Te nanosheets. Nanophotonics, 9, 2459(2020).

    [26] H. S. Qian, S. H. Yu, J. Y. Gong, L. B. Luo, L. Fei. High-quality luminescent tellurium nanowires of several nanometers in diameter and high aspect ratio synthesized by a poly(vinyl pyrrolidone)-assisted hydrothermal process. Langmuir, 22, 3830(2006).

    [27] P. Mohanty, T. Kang, B. Kim. Synthesis of single crystalline tellurium nanotubes with triangular and hexagonal cross sections. J. Phys. Chem. B, 110, 791(2006).

    [28] M. Mo, J. Zeng, X. Liu, W. Yu, S. Zhang, Y. Qian. Controlled hydrothermal synthesis of thin single-crystal tellurium nanobelts and nanotubes. Adv. Mater., 14, 1658(2002).

    [29] E. Reed. Computational materials science: two-dimensional tellurium. Nature, 552, 40(2017).

    [30] Z. L. Zhu, X. L. Cai, S. H. Yi, J. L. Chen, Y. W. Dai, C. Y. Niu, Z. X. Guo, M. H. Xie, F. Liu, J. H. Cho, Y. Jia, Z. Y. Zhang. Multivalency-driven formation of Te-based monolayer materials: a combined first-principles and experimental study. Phys. Rev. Lett., 119, 106101(2017).

    [31] B. Z. Wu, X. H. Liu, J. R. Yin, H. Lee. Bulk β-Te to few layered β-tellurenes: indirect to direct band-gap transitions showing semiconducting property. Mater. Res. Express, 4, 095902(2017).

    [32] J. S. Qiao, Y. H. Pan, F. Yang, C. Wang, Y. Chai, W. Ji. Few-layer tellurium: one-dimensional-like layered elementary semiconductor with striking physical properties. Sci. Bull., 63, 159(2018).

    [33] K. P. Wang, X. Y. Zhang, I. M. Kislyakov, N. N. Dong, S. F. Zhang, G. Z. Wang, J. T. Fan, X. Zou, J. Du, Y. X. Leng, Q. Z. Zhao, K. Wu, J. P. Chen, S. M. Baesman, K. S. Liao, S. Maharjan, H. Z. Zhang, L. Zhang, S. A. Curran, R. S. Oremland, W. J. Blau, J. Wang. Bacterially synthesized tellurium nanostructures for broadband ultrafast nonlinear optical applications. Nat. Commun., 10, 3985(2019).

    [34] H. Hassan, M. A. Munshid, A. AL-Janabi. Tellurium-nanorod-based saturable absorber for an ultrafast passive mode-locked erbium-doped fiber laser. Appl. Opt., 59, 1230(2020).

    [35] Y. X. Wang, G. Qiu, R. X. Wang, S. Y. Huang, Q. X. Wang, Y. Y. Liu, Y. C. Du, W. A. Goddard, M. J. Kim, X. F. Xu, P. D. Ye, W. Z. Wu. Field-effect transistors made from solution-grown two-dimensional tellurene. Nat. Electron., 1, 228(2018).

    [36] C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, U. Keller. Q-switching stability limits of continuous-wave passive mode locking. J. Opt. Soc. Am. B, 16, 46(1999).

    CLP Journals

    [1] Shengjun Huang, Yiran Wang, Jingliang He, Xiancui Su, Jie Liu. Nanosecond and femtosecond lasers based on black arsenic-phosphorus alloys saturable absorber[J]. Chinese Optics Letters, 2022, 20(2): 021408

    Data from CrossRef

    [1] Zixin Yang, Lingfeng Gao, Hualong Chen, Feng Zhang, Qi Yang, Xianghe Ren, Syed Zaheer Ud Din, Chun Li, Jiancai Leng, Jiabao Zhang, Zhiwei Lin, Jiamin Wang, Chunlong Li, Han Zhang. Broadband few-layer niobium carbide MXene as saturable absorber for solid-state lasers. Optics & Laser Technology, 142, 107199(2021).

    Zixin Yang, Lili Han, Qi Yang, Xianghe Ren, Syed Zaheer Ud Din, Xiaoyan Zhang, Jiancai Leng, Jiabao Zhang, Baitao Zhang, Kejian Yang, Jingliang He, Chunlong Li, Jun Wang. Two-dimensional tellurium saturable absorber for ultrafast solid-state laser[J]. Chinese Optics Letters, 2021, 19(3): 031401
    Download Citation