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Two-dimensional (2D) Te nanosheets were successfully fabricated through the liquid-phase exfoliation (LPE) method. The
nonlinear optical properties of 2D Te nanosheets were studied by the open-aperture Z-scan technique. Furthermore, the
continuous wave mode-locked Nd:YVO4 laser was successfully realized by using 2D Te as a saturable absorber (SA) for
the first time, to the best of our knowledge. Ultrashort pulses as short as 5.8 ps were obtained at 1064.3 nm with an output
power of 851 mW. This primary investigation indicates that the 2D Te SA is a promising photonic device in the fields of
ultrafast solid-state lasers.
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1. Introduction

Two-dimensional (2D) materials have attracted tremendous
attention over the past decade due to their outstanding elec-
tronic and optical properties, which have been widely used in
diverse fields such as energy storage, electroluminescent, transis-
tors, photonics, and biology[1–7]. Around 2009, graphene was
initially found to have excellent nonlinear optical properties[8].
Stimulated by the success of graphene, other 2D materials such
as transition metal dichalcogenides (TMDs)[9–11], topological
insulators[12], black phosphorus (BP)[13–15], gold nanomateri-
als[16–18], MXenes[19], graphyne[20], and epsilon-near-zero
(ENZ) materials[21] have been intensively researched due to
their excellent nonlinear optical properties. Among the various
2D materials, graphene has a broad operation wavelength band,
but its weak absorption limits its applications in optoelectronic
devices. TMDs have a tunable bandgap and high carrier mobil-
ity, which have a chemical formula of MX2 (where X = S, Se,
etc., and M =Mo, W, Re, etc.). However, the intrinsic energy

bandgap of TMDs is in 1–2 eV, which limits their optoelectronic
applications over mid-infrared bands. BP exhibits an outstand-
ing optical modulation effect, but it is easily oxidized, whichmay
cause dramatic structural transformations. Thus, it is still nec-
essary to make efforts to explore novel 2D materials suitable
for photonic devices. As the group VI elemental material,
tellurium (Te) has attracted extensive attention because of its
distinctive properties, e.g., thermoelectricity, photoconductiv-
ity, and piezoelectricity[22–24]. For example, Cao et al.[25]

reported the solar-blind deep ultraviolet photodetectors based
on Te nanosheets in 2020, which indicate the great potential
of Te nanosheets for high-performance photodetectors.
Elemental Te ordinarily forms a trigonal crystal structure con-
sisting of atomic chains that spiral along with one of the axes of
the crystal lattice. Due to the weak van der Waals interactions,
these helical chains are collected together to construct hexagonal
lattices, leading to the generation of one-dimensional (1D) Te
nanostructures, such as nanowires[26], nanotubes[27], and nano-
belts[28]. Compared with 1D nanostructures, 2D Te has the large
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specific surface area and thickness-modulated band gap, which
further endows the surface with broader application prospects.
In recent years, the α-Te, β-Te, and γ-Te phases have been

reported, demonstrating that the carrier mobility of three 2D
Te phases is superior to MoS2

[29–32]. Furthermore, Te with a
bandgap of about 0.35 eV at room temperature is a p-type semi-
conductor with a 4d10 5s2 5p4 configuration. Its narrow energy
bandgap is comparable to BP, opening the possibilities for opto-
electronic applications at broadband wavelengths, especially at
the infrared wavelength. Very recently, Te has been proved to
be a potential saturable material in generating Q-switched
and mode-locked pulsed lasers. For example, by using the Te
saturable absorber (SA), Wang et al.[33] successfully realized
the erbium-doped mode-locked fiber laser at 1.55 μm in 2019,
with the shortest pulse width of 1.81 ps and the maximum out-
put power of 1.95 mW. In 2020, Hassan et al.[34] applied the Te
nanorod as an SA to realize the erbium-doped mode-locked
fiber laser at 1.57 μm. Pulses with a minimum pulse width of
3.56 ps and the maximum output power of 6.2 mW were
achieved in their work. Compared with fiber lasers, solid-state
lasers can realize higher peak power. Unfortunately, the poten-
tial of Te as an SA in solid-state lasers of the near-infrared region
has not yet been explored.
In this work, we systematically studied the nonlinear optical

properties of 2D Te nanosheets, and the results exhibited
the promising application of Te in ultrafast photonics.
Furthermore, by using 2D Te as the SA, the continuous wave
mode-locked (CWML) solid-state laser at 1.06 μm was success-
fully realized for the first time, to the best of our knowledge. This
research work broadens the applied spectral ranges of Te and
shows that 2D Te SAs could be a promising optical modulator
for ultrafast solid-state lasers.

2. Preparation and Characterization of 2D Te
Nanosheets

The 2D Te nanosheets were fabricated by the liquid-phase exfo-
liation (LPE) method. This method has been demonstrated to be
a simple and effective way to fabricate 2Dmaterials. As shown in
Fig. 1, the Te powder with purity of 99.99%, which was syn-
thesized by a chemical method, was dispersed in an alcohol sus-
pension and ultrasonicated for 3 h to fabricate thin nanosheets.

The ultrasonic process was operated at a suitable interval to
avoid the change of the material properties under high temper-
ature. After that, the as-prepared suspension was centrifuged at
3000 r/min for 20 min to remove aggregated powders. Finally,
the extracted Te supernatant was transferred onto a sapphire
substrate by spin coating at 200 r/min for 20 s and dried under
an infrared oven lamp. In order to investigate the thickness and
distribution of the 2D Te nanosheets located on the sapphire
substrate, an atomic force microscope (AFM) was used to study
the morphology of the as-prepared Te SA. The AFM images of
the sample at the scales of 5 μm and 1 μm are given in Figs. 2(a)
and 2(c), showing the sheet structure of the as-prepared Te SA.
The average thickness of the Te nanosheets was determined to
be about 5 nm [see Figs. 2(b) and 2(d)], and the corresponding
number of layers of the Te nanosheets is about 12[35].
The crystal phases of the Te sample were systematically char-

acterized by employing X-ray diffraction (XRD) and Raman
techniques. The XRD pattern of Te is presented in Fig. 3(a),
and the strongest diffraction peak is located at 27.57°, which cor-
responds to the (101) planes. The Raman spectrum in the
100–800 cm−1 wavenumber range (with a 532 nm laser as the
excited source) of the Te sample is acquired and plotted in
Fig. 3(b). Two conspicuous Raman peaks located at 114.6 cm−1

and 136.2 cm−1 are assigned to the first-order vibrationmodes of
bending and stretching in the Te crystal. The peak located at
256.8 cm−1 is the second-order Raman vibration. Except for
these modes, the bands, which are located at 216.2 cm−1,
390.8 cm−1, and 638.9 cm−1, can be contributed from the small
amount of oxidation of Te(0)[33]. The experimental results of
XRD and Raman spectra indicated that the prepared Te nano-
sheets had good crystallinity. Figure 3(c) shows the typical trans-
mission electron microscopy (TEM) image of the Te sample,
which depicts it to be a thin sheet with a size of about

Fig. 1. Fabrication process of Te SA.

Fig.2. (a) AFM image of Te SA at the scales of 5 μm. (b) The typical height
profiles of Te SAs in a larger area. (c) AFM image of Te SAs at the scales
of 1 μm. (d) The typical height profiles of Te SAs in a smaller area.
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450 nm. The lattice structure of Te nanosheets was further deter-
mined by high-resolution (HR) TEM (HRTEM). The lattice
fringe spacings of 0.38 nm and 0.23 nm were observed corre-
sponding to (101) and (102) lattice planes, as shown in Fig. 3(d).
The nonlinear optical properties of the 2D Te nanosheets

were measured by the open-aperture Z-scan technique. The
laser source was a femtosecond laser at 1030 nm with a pulse
width of 350 fs and a repetition rate of 1 kHz. Figure 4(a) shows
the measured open-aperture Z-scan curves of the 2D Te SA
under the excitation pulse energy of 100 nJ. The normalized
transmittance gradually increases when the Te sample moves
towards z = 0mm, indicating strong saturable absorption. To
further study the nonlinear saturable absorption properties of
the 2D Te SA, we fitted the data to a simple saturable absorption
model:

T�I� = 1 − ΔR × exp

�
−
I
Is

�
− Tns, (1)

where T�I� is the transmittance rate, I is the input intensity, and
ΔR, Is, and Tns are the modulation depth, saturation intensity,
and nonsaturable loss, respectively. Figure 4(b) presents the
nonlinear transmittance curve versus the energy intensity.

The modulation depth and saturation intensity of the Te SA
were calculated to be 1.9% and 5.7GW=cm2, respectively.

3. Passively Mode-Locked Laser with the Te SA

To further investigate the ability of 2D Te to generate ultrafast
pulses, its application in a mode-locked solid-state laser at
1.06 μm is studied. The experimental setup of the Te-based
mode-locked laser is shown in Fig. 5. A Nd∶YVO4 crystal
was chosen as the gain medium. By considering the parameters
of the crystal and SA, a 1.495m longW-type optimum resonator
was designed in our experiment, corresponding to the round-
trip time TR of 9.97 ns. M1 and M5 were the planar mirrors,
while M2 and M3 were the concave mirrors with curvature radii
of 200 and 800 mm, respectively. They all had an antireflection
(AR) coating for the pump light (808 nm) and an HR coating for
oscillating light (1064 nm). The output coupler M4 with the cur-
vature radii of 100mmhad a transmission of 1% at 1064 nm. For
the CWML laser experiment, the prepared Te SA was inserted
into the cavity near M5. Based on the ABCD matrix, the laser
mode radii on Nd:YVO4 and Te SA were determined to be
104 μm and 31 μm.
The average output power versus absorbed pump power is

shown in Fig. 6(a). As the absorbed pump power increased to
3.84 W, the laser mode changed from CW to Q-switched
mode-locking (QML) operation. When the absorbed pump
power increased to 6.44 W, the laser ran into a stable CWML
regime, corresponding to the output power of 442 mW. The
maximum average output power of CWML was 851 mW under
the absorbed pump power of 9.75 W with a slope efficiency of
9.3%. Figures 6(b) and 6(c) show the typical pulse trains of QML
and CWML at the time scales of 200 ns and 10 μs, respectively.
The measured repetition rate of the mode-locked operation was
100.3 MHz, which was in good agreement with the round-trip
time. The jitter of the average output power (output powers,
rms) at the maximum absorbed pump power was measured
to be less than 1% at 1 h, indicating good stability of the
CWML laser.
Figure 6(d) displays the autocorrelation trace of the laser

pulse, where the pulse duration was measured to be 5.8 ps by
sech2 pulse shape fitting. The emitted optical spectrum of the
CWML laser under the maximum output power is depicted
in the inset of Fig. 6(d). The spectral FWHMof the mode-locked

Fig. 3. (a) XRD pattern of Te. (b) Raman spectrum of Te SA. (c) TEM image of Te
samples. (d) High-resolution (HR) TEM image of Te samples.

Fig. 4. (a) Normalized transmittance versus z axis at the excitation pulse
energy of 100 nJ. (b) The nonlinear transmission versus energy intensity of
Te SAs. Fig. 5. Schematic of the mode-locked laser setup based on Te SA.
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laser was about 0.30 nm with a central wavelength at 1064.3 nm.
According to the above data, the maximum obtained pulse
energy and peak power were calculated to be 8.48 nJ and
1.46 kW, respectively. Based on the mode-locking theory, the
relationship between laser dynamics and mode lockers to realize
stable passively mode-locked operation can be expressed as[36]

E2
p > E2

m ≡ EcEsΔR, (2)

where Ep = PTR is the energy of a mode-locked pulse in the cav-
ity, P is the intracavity pulsed laser power, TR is the round-trip
time, Em is the critical intracavity pulse energy, and Ec and Es are
the saturation energies of the laser gain material and SA, respec-
tively. When Ep > Em, the stable CWML operation can be
obtained. To make the relationship between laser dynamics
and mode-locked laser more obvious, Em can be computed by
the following equation[36]:

Em = �ElAcIsAsΔR�12 = �El × πω2
c × Is × πω2

s × ΔR�12, (3)

where El = �hc�=�mσcλ� is the saturation fluence of the laser
medium, σc is the emission cross section of the laser crystal,
λ, h, and c are the laser wavelength, the Planck constant, and
the light velocity, respectively, andm is the cavity constant, with
m = 1 for a ring cavity and m = 2 for a linear cavity. Ac and As

are the effective laser mode areas on the crystal and SA; ωc and
ωs are the laser spot radius of the crystal and SA; respectively.
Based on the above data, Ep was calculated to be 4.38 × 10−7 J,
and Em was calculated to be 1.21 × 10−7 J. It matches the relation
of Ep > Em, indicating that stable CWML operation was
obtained.
Table 1 exhibits typical pulse parameters of the CWML lasers

at 1.06 μm by using various SAs, such as single-walled carbon

nanotubes (SWCNTs)[4], graphene[6], PtSe2
[11], and BP[14].

The pulse energy and peak power in this work were inferior
to SWCNTs, but better than other nanomaterials. In addition,
the pulse width, which was realized based on the 2D Te SA, is
the shortest among the materials mentioned above. It can be
concluded that the 2D Te SA is an excellent optical modulator
for solid-state ultrafast laser generation. The maximum peak
power intensity on the SA was calculated to be about
9.7 GW=cm2, and we did not find any optical damage on the
Te SA in the laser experiment, which indicates that the damage
threshold of Te for an ultrafast laser should be larger than
9.7GW=cm2. The time-bandwidth product was about 0.455,
which was higher than the Fourier transform limit of 0.315. It
indicates that the mode-locked pulse was chirped, and we
can further compress the pulse duration by optimizing the laser
cavity configuration and compensating the dispersion in
future work.

4. Conclusions

In conclusion, the 2D Te nanosheets were successfully syn-
thesized by using the LPE method. The nonlinear optical prop-
erties of 2D Te nanosheets were investigated by applying the
open-aperture Z-scan technique. The results proved that 2D
Te nanosheets have excellent nonlinear optical properties.
Furthermore, we successfully realized the CWML Nd∶YVO4

laser by using the 2D Te SA for the first time, to the best of
our knowledge. Pulses as short as 5.8 ps with a repetition rate
of 100.3 MHz and maximum output power of 851 mW were
achieved at the central wavelength of 1064.3 nm. Our research
work indicates that the 2D Te SA could be an excellent optical
modulator and may be beneficial for the design of 2D optoelec-
tronic devices.
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