• Journal of Semiconductors
  • Vol. 42, Issue 6, 062802 (2021)
Mahmoud Shaban1、2
Author Affiliations
  • 1Department of Electrical Engineering, College of Engineering, Qassim University, Unaizah 56452, Saudi Arabia
  • 2Department of Electrical Engineering, Faculty of Engineering, Aswan University, Aswan 81542, Egypt
  • show less
    DOI: 10.1088/1674-4926/42/6/062802 Cite this Article
    Mahmoud Shaban. Determination of trap density-of-states distribution of nitrogen-doped ultrananocrystalline diamond/hydrogenated amorphous carbon composite films[J]. Journal of Semiconductors, 2021, 42(6): 062802 Copy Citation Text show less
    References

    [1]

    [2] P W May. Diamond thin films: A 21st-century material. Philos Trans Royal Soc Lond Ser A, 358, 473(2000).

    [3] S C Mi, M Kiss, T Graziosi et al. Integrated photonic devices in single crystal diamond. J Phys Photonics, 2, 042001(2020).

    [4] A Kobayashi, S Ohmagari, H Umezawa et al. Suppression of killer defects in diamond vertical-type Schottky barrier diodes. Jpn J Appl Phys, 59, SGGD10(2020).

    [5] T Matsumoto, H Kato, K Oyama et al. Inversion channel diamond metal-oxide-semiconductor field-effect transistor with normally off characteristics. Sci Rep, 6, 31585(2016).

    [6] X Y Peng, Y M Li, S K Duan et al. Precise ultrananocrystalline diamond nanowire arrays for high performance gas sensing application. Mater Lett, 265, 127404(2020).

    [7] S Jiao, A Sumant, M A Kirk et al. Microstructure of ultrananocrystalline diamond films grown by microwave Ar–CH4 plasma chemical vapor deposition with or without added H2. J Appl Phys, 90, 118(2001).

    [8] M Bevilacqua, N Tumilty, C Mitra et al. Nanocrystalline diamond as an electronic material: An impedance spectroscopic and Hall effect measurement study. J Appl Phys, 107, 033716(2010).

    [9] O Auciello, A V Sumant. Status review of the science and technology of ultrananocrystalline diamond (UNCD™) films and application to multifunctional devices. Diam Relat Mater, 19, 699(2010).

    [10] H J Zeng, A R Konicek, N Moldovan et al. Boron-doped ultrananocrystalline diamond synthesized with an H-rich/Ar-lean gas system. Carbon, 84, 103(2015).

    [11] M Mertens, M Mohr, N Wiora et al. N-type conductive ultrananocrystalline diamond films grown by hot filament CVD. J Nanomater, 2015, 1(2015).

    [12] T Ikeda, K Teii, C Casiraghi et al. Effect of the sp2 carbon phase on n-type conduction in nanodiamond films. J Appl Phys, 104, 073720(2008).

    [13] P Zapol, M Sternberg, L A Curtiss et al. Tight-binding molecular-dynamics simulation of impurities in ultrananocrystalline diamond grain boundaries. Phys Rev B, 65, 045403(2001).

    [14] S Bhattacharyya, O Auciello, J Birrell et al. Synthesis and characterization of highly-conducting nitrogen-doped ultrananocrystalline diamond films. Appl Phys Lett, 79, 1441(2001).

    [15] J Birrell, J E Gerbi, O Auciello et al. Bonding structure in nitrogen doped ultrananocrystalline diamond. J Appl Phys, 93, 5606(2003).

    [16] W Kulisch, C Popov, E Lefterova et al. Electrical properties of ultrananocrystalline diamond/amorphous carbon nanocomposite films. Diam Relat Mater, 19, 449(2010).

    [17] A Voss, S R Stateva, J P Reithmaier et al. Patterning of the surface termination of ultrananocrystalline diamond films for guided cell attachment and growth. Surf Coat Technol, 321, 229(2017).

    [18] K Hanada, T Nishiyama, T Yoshitake et al. Optical emission spectroscopy of deposition process of ultrananocrystalline diamond/hydrogenated amorphous carbon composite films by using a coaxial arc plasma gun. Diam Relat Mater, 19, 899(2010).

    [19] R Chaleawpong, N Promros, A Zkria et al. Diode parameters and ultraviolet light detection characteristics of n-type silicon/p-type nanocrystalline diamond heterojunctions at different temperatures. Thin Solid Films, 709, 138222(2020).

    [20] A M Ali, T Deckert-Gaudig, M Egiza et al. Near- and far-field Raman spectroscopic studies of nanodiamond composite films deposited by coaxial arc plasma. Appl Phys Lett, 116, 041601(2020).

    [21] Y Katamune, S Al-Riyami, S Takeichi et al. Study on defects in ultrananocrystalline diamond/amorphous carbon composite films prepared by physical vapor deposition. ECS Trans, 75, 45(2017).

    [22] A Zkria, E Abubakr, P Sittimart et al. Analysis of electrical characteristics of Pd/n-nanocarbon/p-Si heterojunction diodes: By CVf and G/wVf. J Nanomater, 2020, 4917946(2020).

    [23] A Zkria, F Abdel-Wahab, Y Katamune et al. Optical and structural characterization of ultrananocrystalline diamond/hydrogenated amorphous carbon composite films deposited via coaxial arc plasma. Curr Appl Phys, 19, 143(2019).

    [24] S Al-Riyami, S Ohmagari, T Yoshitake. Nitrogen-doped ultrananocrystalline diamond/hydrogenated amorphous carbon composite films prepared by pulsed laser deposition. Appl Phys Express, 3, 115102(2010).

    [25] A Zkria, H Gima, M Shaban et al. Electrical characteristics of nitrogen-doped ultrananocrystalline diamond/hydrogenated amorphous carbon composite films prepared by coaxial arc plasma deposition. Appl Phys Express, 8, 095101(2015).

    [26] H Gima, A Zkria, Y Katamune et al. Chemical bonding structural analysis of nitrogen-doped ultrananocrystalline diamond/hydrogenated amorphous carbon composite films prepared by coaxial arc plasma deposition. Appl Phys Express, 10, 015801(2017).

    [27] A Zkria, M Shaban, T Hanada et al. Current transport mechanisms in N-type ultrananocrystalline diamond/p-type Si heterojunctions. J Nanosci Nanotechnol, 16, 12749(2016).

    [28] A Zkria, H Gima, T Yoshitake. Application of nitrogen-doped ultrananocrystalline diamond/hydrogenated amorphous carbon composite films for ultraviolet detection. Appl Phys A, 123, 167(2017).

    [29] A Zkria, T Yoshitake. Temperature-dependent current–voltage characteristics and ultraviolet light detection of heterojunction diodes comprising n-type ultrananocrystalline diamond/hydrogenated amorphous carbon composite films and p-type silicon substrates. Jpn J Appl Phys, 56, 07KD04(2017).

    [30] M Shaban, A Zkria, T Yoshitake. Characterization and design optimization of heterojunction photodiodes comprising n-type ultrananocrystalline diamond/hydrogenated amorphous carbon composite and p-type Si. Mater Sci Semicond Process, 86, 115(2018).

    [31] A Zkria, M Shaban, E Abubakr et al. Impedance spectroscopy analysis of n-type (nitrogen-doped) ultrananocrystalline diamond/p-type Si heterojunction diodes. Phys Scr, 95, 095803(2020).

    [32] M Shaban. Modeling, design, and simulation of Schottky diodes based on ultrananocrystalline diamond composite films. Semicond Sci Technol, 36, 015004(2020).

    [33]

    [34]

    [35] J A Carr, M Elshobaki, S Chaudhary. Deep defects and the attempt to escape frequency in organic photovoltaic materials. Appl Phys Lett, 107, 203302(2015).

    [36] T Makino, H Kato, S G Ri et al. Electrical characterization of homoepitaxial diamond p-n+ junction. Diam Relat Mater, 14, 1995(2005).

    [37] X F Zhang, T Matsumoto, U Sakurai et al. Energy distribution of Al2O3/diamond interface states characterized by high temperature capacitance-voltage method. Carbon, 168, 659(2020).

    [38] H Xu, H T Ye, D Coathup et al. An insight of p-type to n-type conductivity conversion in oxygen ion-implanted ultrananocrystalline diamond films by impedance spectroscopy. Appl Phys Lett, 110, 033102(2017).

    [39] V D Frolov, S M Pimenov, V I Konov et al. Electronic properties of low-field-emitting ultrananocrystalline diamond films. Surf Interface Anal, 36, 449(2004).

    [40] N Wiora, M Mertens, K Brühne et al. Grain boundary dominated electrical conductivity in ultrananocrystalline diamond. J Appl Phys, 122, 145102(2017).

    [41] T Walter, R Herberholz, C Muller et al. Determination of defect distributions from admittance measurements and application to Cu(In, Ga)Se2 based heterojunctions. J Appl Phys, 80, 4411(1996).

    Mahmoud Shaban. Determination of trap density-of-states distribution of nitrogen-doped ultrananocrystalline diamond/hydrogenated amorphous carbon composite films[J]. Journal of Semiconductors, 2021, 42(6): 062802
    Download Citation