• Journal of Semiconductors
  • Vol. 43, Issue 4, 041103 (2022)
Luying Li1, Yongfa Cheng1, Zunyu Liu1, Shuwen Yan1, Li Li1, Jianbo Wang2, Lei Zhang3, and Yihua Gao1
Author Affiliations
  • 1Center for Nanoscale Characterization & Devices, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-Structures, and the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
  • 3Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
  • show less
    DOI: 10.1088/1674-4926/43/4/041103 Cite this Article
    Luying Li, Yongfa Cheng, Zunyu Liu, Shuwen Yan, Li Li, Jianbo Wang, Lei Zhang, Yihua Gao. Study of structure-property relationship of semiconductor nanomaterials by off-axis electron holography[J]. Journal of Semiconductors, 2022, 43(4): 041103 Copy Citation Text show less
    References

    [1] M M Waldrop. The chips are down for Moore's law. Nature, 530, 144(2016).

    [2] L Li, Z Gan, M R McCartney et al. Atomic configurations at InAs partial dislocation cores associated with Z-shape faulted dipoles. Sci Rep, 3, 3229(2013).

    [3] L Li, F Tu, L Jin et al. Polarity continuation and frustration in ZnSe nanospirals. Sci Rep, 4, 7447(2014).

    [4] D J Smith. Atomic-resolution structure imaging of defects and interfaces in compound semiconductors. Prog Cryst Growth Charact Mater, 66, 100498(2020).

    [5] W L Bragg. Microscopy by reconstructed wave-fronts. Nature, 166, 399(1950).

    [6] A V Crewe, M Isaacson, D Johnson. A simple scanning electron microscope. Rev Sci Instrum, 40, 241(1969).

    [7] J M Cowley. Twenty forms of electron holography. Ultramicroscopy, 41, 335(1992).

    [8] L Y Li, X K Hu, Y H Gao. Electron holographic study of semiconductor light-emitting diodes. Small, 14, 1701996(2018).

    [9] H Lichte, P Formanek, A Lenk et al. Electron holography: Applications to materials questions. Annu Rev Mater Res, 37, 539(2007).

    [10] M R McCartney, M Gajdardziska-Josifovska. Absolute measurement of normalized thickness, t/λi, from off-axis electron holography. Ultramicroscopy, 53, 283(1994).

    [11] M A Gribelyuk, M R McCartney, J Li et al. Mapping of electrostatic potential in deep submicron CMOS devices by electron holography. Phys Rev Lett, 89, 025502(2002).

    [12] M I den Hertog, H Schmid, D Cooper et al. Mapping active dopants in single silicon nanowires using off-axis electron holography. Nano Lett, 9, 3837(2009).

    [13] L Y Li, D J Smith, E Dailey et al. Observation of hole accumulation in Ge/Si core/shell nanowires using off-axis electron holography. Nano Lett, 11, 493(2011).

    [14] Z F Gan, M Gu, J S Tang et al. Direct mapping of charge distribution during lithiation of Ge nanowires using off-axis electron holography. Nano Lett, 16, 3748(2016).

    [15] L Zhou, D J Smith, M R McCartney et al. Measurement of electric field across individual wurtzite GaN quantum dots using electron holography. Appl Phys Lett, 99, 101905(2011).

    [16] M R McCartney, R E Dunin-Borkowski, D J Smith. Quantitative measurement of nanoscale electrostatic potentials and charges using off-axis electron holography: Developments and opportunities. Ultramicroscopy, 203, 105(2019).

    [17] F Kern, M Linck, D Wolf et al. Autocorrected off-axis holography of two-dimensional materials. Phys Rev Res, 2, 043360(2020).

    [18] L Y Li, S Ketharanathan, J Drucker et al. Study of hole accumulation in individual germanium quantum dots in p-type silicon by off-axis electron holography. Appl Phys Lett, 94, 232108(2009).

    [19] Z F Gan, D E Perea, J Yoo et al. Characterization of electrical properties in axial Si-Ge nanowire heterojunctions using off-axis electron holography and atom-probe tomography. J Appl Phys, 120, 104301(2016).

    [20] F Cheng, B Li, L Y Li et al. Study of the polarization effect in InAs quantum dots/GaAs nanowires. J Phys Chem C, 123, 4228(2019).

    [21] C Li, Y F Cheng, B Li et al. Study of charge distributions and electrical properties in GaAs/AlGaAs single quantum well/nanowire heterostructures. J Phys Chem C, 123, 26888(2019).

    [22] T Y Qi, Y F Cheng, F Cheng et al. Study of nanometer-scale structures and electrostatic properties of InAs quantum dots decorating GaAs/AlAs core/shell nanowires. Nanotechnology, 31, 245701(2020).

    [23] M den Hertog, R Songmuang, E Monroy. Polarization fields in GaN/AlN nanowire heterostructures studied by off-axis holography. J Phys: Conf Ser, 471, 012019(2013).

    [24] X Chen, Y G Wang, J Guo et al. In-situ potential mapping of space charge layer in GaN nanowires under electrical field by off-axis electron holography. Prog Nat Sci Mater Int, 26, 163(2016).

    [25] X Chen, Y G Wang, J K Jian et al. Effect of strain on space charge layer in GaN nanowires investigated by in situ off-axis electron holography. Prog Nat Sci Mater Int, 27, 186(2017).

    [26] X Chen, Y G Wang, J K Jian et al. Controlling charges distribution at the surface of a single GaN nanowire by in situ strain. Prog Nat Sci Mater Int, 27, 430(2017).

    [27] M den Hertog, F Donatini, R McLeod et al. In situ biasing and off-axis electron holography of a ZnO nanowire. Nanotechnology, 29, 025710(2018).

    [28] F Jiang, J W Chen, H Bi et al. The underlying micro-mechanism of performance enhancement of non-polar n-ZnO/p-AlGaN ultraviolet light emitting diode with i-ZnO inserted layer. Appl Phys Lett, 112, 033505(2018).

    [29] X Li, C Y Wen, L T Yang et al. Enhanced visualizing charge distribution of 2D/2D MXene/MoS2 heterostructure for excellent microwave absorption performance. J Alloys Compd, 869, 159365(2021).

    [30] L S Xing, X Li, Z C Wu et al. 3D hierarchical local heterojunction of MoS2/FeS2 for enhanced microwave absorption. Chem Eng J, 379, 122241(2020).

    [31] T Kawasaki, Y Takahashi, T Tanigaki. Holography: application to high-resolution imaging. Microscopy, 70, 39(2020).

    [32] D Wolf, A Lubk, P Prete et al. 3D mapping of nanoscale electric potentials in semiconductor structures using electron-holographic tomography. J Phys D, 49, 364004(2016).

    [33] L Z Y Liu, C McAleese, D V Sridhara Rao et al. Electron holography of an in situ biased GaN-based LED. Phys Status Solidi C, 9, 704(2012).

    [34] S Yazdi, T Kasama, M Beleggia et al. Towards quantitative electrostatic potential mapping of working semiconductor devices using off-axis electron holography. Ultramicroscopy, 152, 10(2015).

    Luying Li, Yongfa Cheng, Zunyu Liu, Shuwen Yan, Li Li, Jianbo Wang, Lei Zhang, Yihua Gao. Study of structure-property relationship of semiconductor nanomaterials by off-axis electron holography[J]. Journal of Semiconductors, 2022, 43(4): 041103
    Download Citation