• Laser & Optoelectronics Progress
  • Vol. 59, Issue 9, 0922013 (2022)
Yang Liu, Li Li*, Siwen Chen, and Jiubin Tan
Author Affiliations
  • Key Laboratory of Ultra-Precision Intelligent Instrumentation, Ministry of Industry and Information Technology, Harbin Institute of Technology, Harbin 150001, Heilongjiang , China
  • show less
    DOI: 10.3788/LOP202259.0922013 Cite this Article Set citation alerts
    Yang Liu, Li Li, Siwen Chen, Jiubin Tan. Ultra-Precision Motion Stage Control Technology for IC Lithography[J]. Laser & Optoelectronics Progress, 2022, 59(9): 0922013 Copy Citation Text show less
    References

    [1] Wang X Z, Dai F Z[M]. Integrated circuit and lithographic tool(2020).

    [4] Wei Y Y[M]. Advanced lithography theory and application of VLSI(2016).

    [5] Butler H, George R A, Baselmans J. Scanning stage technology for exposure tools[J]. Microlithography World, 8, 8-16(1999).

    [6] Butler H. Position control in lithographic equipment[applications of control][J]. IEEE Control Systems Magazine, 31, 28-47(2011).

    [7] Schmidt R H M. Ultra-precision engineering in lithographic exposure equipment for the semiconductor industry[J]. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 370, 3950-3972(2012).

    [8] Schmidt R M, Schitter G, Rankers A et al[M]. The design of high performance mechatronics: high-tech functionality by multidisciplinary system integration(2014).

    [9] Dirkx N, van de Wijdeven J, Oomen T. Frequency Response Function identification for multivariable motion control: optimal experiment design with element-wise constraints[J]. Mechatronics, 71, 102440(2020).

    [10] de Rozario R, Oomen T. Multivariable nonparametric learning: a robust iterative inversion-based control approach[J]. International Journal of Robust and Nonlinear Control, 31, 541-564(2021).

    [11] Voorhoeve R, de Rozario R, Aangenent W et al. Identifying position-dependent mechanical systems: a modal approach applied to a flexible wafer stage[J]. IEEE Transactions on Control Systems Technology, 29, 194-206(2021).

    [12] Oomen T, van Herpen R, Quist S et al. Connecting system identification and robust control for next-generation motion control of a wafer stage[J]. IEEE Transactions on Control Systems Technology, 22, 102-118(2014).

    [13] Oomen T. Advanced motion control for precision mechatronics: control, identification, and learning of complex systems[J]. IEEJ Journal of Industry Applications, 7, 127-140(2018).

    [14] Boeren F, Lanzon A, Oomen T. Iterative identification and control using non-normalized coprime factors with application in wafer stage motion control[J]. IEEE Transactions on Control Systems Technology, 28, 413-424(2018).

    [15] Butler H. Magnetic disturbance compensation for a reticle stage in a lithographic tool[J]. Mechatronics, 23, 559-565(2013).

    [16] Hoogerkamp M, Waiboer R R, van Dijk J et al. Attenuation of disturbances introduced by dynamic links in precision motion systems using model-based observers[J]. Mechatronics, 24, 640-647(2014).

    [17] Butler H, de Hoon C. Fractional-order filters for active damping in a lithographic tool[J]. Control Engineering Practice, 21, 413-419(2013).

    [18] Iwasaki M, Seki K, Maeda Y. High-precision motion control techniques: a promising approach to improving motion performance[J]. IEEE Industrial Electronics Magazine, 6, 32-40(2012).

    [19] Chen Z Y. Soft-sensor method for mechanical parameters of multi-DOF ultra-precision motion stage[D](2016).

    [20] Heertjes M, van Engelen A. Minimizing cross-talk in high-precision motion systems using data-based dynamic decoupling[J]. Control Engineering Practice, 19, 1423-1432(2011).

    [21] Li M, Mao C H, Zhu Y et al. Data-based iterative dynamic decoupling control for precision MIMO motion systems[J]. IEEE Transactions on Industrial Informatics, 16, 1668-1676(2020).

    [22] Jiang Y, Zhu Y, Yang K M et al. A data-driven iterative decoupling feedforward control strategy with application to an ultraprecision motion stage[J]. IEEE Transactions on Industrial Electronics, 62, 620-627(2015).

    [23] Yang J, Zhu Y, Yin W S et al. LFT structured uncertainty modeling and robust loop-shaping controller optimization for an ultraprecision positioning stage[J]. IEEE Transactions on Industrial Electronics, 61, 7013-7025(2014).

    [24] Hoogendijk R, Heertjes M F, van de Molengraft M J G et al. Directional Notch filters for motion control of flexible structures[J]. Mechatronics, 24, 632-639(2014).

    [25] Butler H. Acceleration feedback in a lithographic tool[J]. Control Engineering Practice, 20, 453-464(2012).

    [26] van de Wal M, van Baars G, Sperling F et al. Multivariable H∞/μ feedback control design for high-precision wafer stage motion[J]. Control Engineering Practice, 10, 739-755(2002).

    [27] Oomen T, van de Wal M, Bosgra O. Design framework for high-performance optimal sampled-data control with application to a wafer stage[J]. International Journal of Control, 80, 919-934(2007).

    [28] Wassink M G, van de Wal M, Scherer C et al. LPV control for a wafer stage: beyond the theoretical solution[J]. Control Engineering Practice, 13, 231-245(2005).

    [29] Heertjes M F, Schuurbiers X G P, Nijmeijer H. Performance-improved design of N-PID controlled motion systems with applications to wafer stages[J]. IEEE Transactions on Industrial Electronics, 56, 1347-1355(2009).

    [30] Heertjes M F, Sahin I H, van de Wouw N et al. Switching control in vibration isolation systems[J]. IEEE Transactions on Control Systems Technology, 21, 626-635(2013).

    [31] Hunnekens B, van de Wouw N, Heertjes M et al. Synthesis of variable gain integral controllers for linear motion systems[J]. IEEE Transactions on Control Systems Technology, 23, 139-149(2015).

    [32] Heertjes M, Verstappen R. Self-tuning in integral sliding mode control with a Levenberg-Marquardt algorithm[J]. Mechatronics, 24, 385-393(2014).

    [33] Heertjes M F, Perdiguero N I, Deenen D A. Robust control and data-driven tuning of a hybrid integrator-gain system with applications to wafer scanners[J]. International Journal of Adaptive Control and Signal Processing, 33, 371-387(2019).

    [34] Wang Y G. Sliding mode variable structure control and its application to wafer scanner[D](2015).

    [35] Wang Y G, Chen X L, Li X J. Modified robust sliding-mode control method for wafer scanner[J]. Advances in Mechanical Engineering, 7, 1-9(2015).

    [36] Zheng J C, Wang H, Man Z H et al. Robust motion control of a linear motor positioner using fast nonsingular terminal sliding mode[J]. IEEE/ASME Transactions on Mechatronics, 20, 1743-1752(2015).

    [37] Zheng M. Advanced learning, estimation and control in high-precision systems[D](2017).

    [38] Heertjes M F, Nijmeijer H. Self-tuning of a switching controller for scanning motion systems[J]. Mechatronics, 22, 310-319(2012).

    [39] Li M, Yang K M, Zhu Y et al. State/model-free variable-gain discrete sliding mode control for an ultraprecision wafer stage[J]. IEEE Transactions on Industrial Electronics, 64, 6695-6705(2017).

    [40] Li M, Zhu Y, Yang K M et al. A data-driven variable-gain control strategy for an ultra-precision wafer stage with accelerated iterative parameter tuning[J]. IEEE Transactions on Industrial Informatics, 11, 1179-1189(2015).

    [41] Heertjes M F, van der Velden B, Oomen T. Constrained iterative feedback tuning for robust control of a wafer stage system[J]. IEEE Transactions on Control Systems Technology, 24, 56-66(2016).

    [42] Li M, Zhu Y, Yang K M et al. Convergence rate oriented iterative feedback tuning with application to an ultraprecision wafer stage[J]. IEEE Transactions on Industrial Electronics, 66, 1993-2003(2019).

    [43] Fu X W. Analysis and method research of compensation for force ripple of iron linear motor[D](2017).

    [44] Fu X W, Yang X F, Chen Z Y. A new linear motor force ripple compensation method based on inverse model iterative learning and robust disturbance observer[J]. Complexity, 2018, 1-19(2018).

    [45] Liu C, Wu J H, Xiong Z H. High-acceleration and high-precision point-to-point motion control based on disturbance observer with improved Q-filter[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 229, 587-598(2015).

    [46] Liu C, Wu J H, Liu J et al. High acceleration motion control based on a time-domain identification method and the disturbance observer[J]. Mechatronics, 24, 672-678(2014).

    [47] Devasia S. Should model-based inverse inputs be used as feedforward under plant uncertainty?[J]. IEEE Transactions on Automatic Control, 47, 1865-1871(2002).

    [48] Wu Y, Zou Q Z. Robust-inversion-based 2-DOF-control design for output tracking: piezoelectric actuator example[J]. IEEE Transactions on Control Systems Technology, 17, 1059-1082(2009).

    [49] Boerlage M, Steinbuch M, Lambrechts P et al. Model-based feedforward for motion systems[C], 1158-1163(2003).

    [50] Butterworth J A, Pao L Y, Abramovitch D Y. Analysis and comparison of three discrete-time feedforward model-inverse control techniques for nonminimum-phase systems[J]. Mechatronics, 22, 577-587(2012).

    [51] van Zundert J, Oomen T. On inversion-based approaches for feedforward and ILC[J]. Mechatronics, 50, 282-291(2018).

    [52] Li M, Zhu Y, Yang K M et al. An integrated model-data-based zero-phase error tracking feedforward control strategy with application to an ultraprecision wafer stage[J]. IEEE Transactions on Industrial Electronics, 64, 4139-4149(2017).

    [53] Xia B Z, Yuan C P, Tian Y et al. Disturbance estimation and compensation for planar motors on the long-stroke stage of a wafer stage[J]. Advances in Mechanical Engineering, 7, 1-10(2015).

    [54] Mu H H, Zhou Y F, Wen X et al. Calibration and compensation of cogging effect in a permanent magnet linear motor[J]. Mechatronics, 19, 577-585(2009).

    [55] Blanken L, van den Meijdenberg I, Oomen T. Inverse system estimation for feedforward: a kernel-based approach for non-causal systems[J]. IFAC-PapersOnLine, 51, 1050-1055(2018).

    [56] Kasemsinsup Y, Romagnoli R, Heertjes M et al. Reference-tracking feedforward control design for linear dynamical systems through signal decomposition[C], 2387-2392(2017).

    [57] Liu Y, Xu X D, Chen Z Y et al. RBFNN based linear motor cogging force identification for lithography machines[J]. IFAC-PapersOnLine, 48, 650-655(2015).

    [58] Butler H. Adaptive feedforward for a wafer stage in a lithographic tool[J]. IEEE Transactions on Control Systems Technology, 21, 875-881(2013).

    [59] Li X J, Wang Y G. Sliding-mode control combined with improved adaptive feedforward for wafer scanner[J]. Mechanical Systems and Signal Processing, 103, 105-116(2018).

    [60] Zhao S, Tan K K. Adaptive feedforward compensation of force ripples in linear motors[J]. Control Engineering Practice, 13, 1081-1092(2005).

    [61] Wang Z, Hu C X, Zhu Y et al. Neural network learning adaptive robust control of an industrial linear motor-driven stage with disturbance rejection ability[J]. IEEE Transactions on Industrial Informatics, 13, 2172-2183(2017).

    [62] Xu L, Yao B. Adaptive robust precision motion control of linear motors with negligible electrical dynamics: theory and experiments[J]. IEEE/ASME Transactions on Mechatronics, 6, 444-452(2001).

    [63] Fine B T. Practical iterative learning control: intuitive methods for precision motion control[D](2009).

    [64] Fine B T, Mishra S, Tomizuka M. Model inverse based Iterative Learning Control using finite impulse response approximations[C], 931-936(2009).

    [65] Jiang X M. Iterative learning control and its applications to wafer scanner systems[D](2014).

    [66] de Roover D, Bosgra O H. Synthesis of robust multivariable iterative learning controllers with application to a wafer stage motion system[J]. International Journal of Control, 73, 968-979(2000).

    [67] Zheng M H, Wang C, Sun L T et al. Design of arbitrary-order robust iterative learning control based on robust control theory[J]. Mechatronics, 47, 67-76(2017).

    [68] Dijkstra B G. Iterative learning control, with applications to a wafer-stage[D](2003).

    [69] Barton K L, Alleyne A G. A norm optimal approach to time-varying ILC with application to a multi-axis robotic testbed[J]. IEEE Transactions on Control Systems Technology, 19, 166-180(2011).

    [70] Liu Y, Li L, Yang X F et al. Enhanced Kalman-filtering iterative learning control with application to a wafer scanner[J]. Information Sciences, 541, 152-165(2020).

    [71] Lin C Y, Sun L T, Tomizuka M. Robust principal component analysis for iterative learning control of precision motion systems with non-repetitive disturbances[C], 2819-2824(2015).

    [72] Merry R, van de Molengraft R, Steinbuch M. Iterative learning control with wavelet filtering[J]. International Journal of Robust and Nonlinear Control, 18, 1052-1071(2008).

    [73] Mishra S, Tomizuka M. Projection-based iterative learning control for wafer scanner systems[J]. IEEE/ASME Transactions on Mechatronics, 14, 388-393(2009).

    [74] Mishra S, Coaplen J, Tomizuka M. Precision positioning of wafer scanners segmented iterative learning control for nonrepetitive disturbances applications of control[J]. IEEE Control Systems Magazine, 27, 20-25(2007).

    [75] Heertjes M, Tso T. Nonlinear iterative learning control with applications to lithographic machinery[J]. Control Engineering Practice, 15, 1545-1555(2007).

    [76] Rotariu I, Steinbuch M, Ellenbroek R. Adaptive iterative learning control for high precision motion systems[J]. IEEE Transactions on Control Systems Technology, 16, 1075-1082(2008).

    [77] Heertjes M F, van de Molengraft R M J G. Set-point variation in learning schemes with applications to wafer scanners[J]. Control Engineering Practice, 17, 345-356(2009).

    [78] Yu S W. Enhanced iterative learning control with applications to a wafer scanner system[D](2011).

    [79] van der Meulen S H, Tousain R L, Bosgra O H. Fixed structure feedforward controller design exploiting iterative trials: application to a wafer stage and a desktop printer[J]. Journal of Dynamic Systems, Measurement, and Control, 130, 051006(2008).

    [80] Song F Z, Liu Y, Xu J X et al. Iterative learning identification and compensation of space-periodic disturbance in PMLSM systems with time delay[J]. IEEE Transactions on Industrial Electronics, 65, 7579-7589(2018).

    [81] Boeren F, Oomen T. Iterative feedforward control: a closed-loop identification problem and a solution[C], 6694-6699(2013).

    [82] Boeren F, Blanken L, Bruijnen D et al. Optimal estimation of rational feedforward control via instrumental variables: with application to a wafer stage[J]. Asian Journal of Control, 20, 975-992(2018).

    [83] Song F Z, Liu Y, Xu J X et al. Data-driven iterative feedforward tuning for a wafer stage: a high-order approach based on instrumental variables[J]. IEEE Transactions on Industrial Electronics, 66, 3106-3116(2019).

    [84] Li L, Liu Y, Li L Y et al. Kalman-filtering-based iterative feedforward tuning in presence of stochastic noise: with application to a wafer stage[J]. IEEE Transactions on Industrial Informatics, 15, 5816-5826(2019).

    [85] Boeren F, Bareja A, Kok T et al. Frequency-domain ILC approach for repeating and varying tasks: with application to semiconductor bonding equipment[J]. IEEE/ASME Transactions on Mechatronics, 21, 2716-2727(2016).

    [86] Li M, Zhu Y, Yang K M et al. Data-based switching feedforward control for repeating and varying tasks: with application to an ultraprecision wafer stage[J]. IEEE Transactions on Industrial Electronics, 66, 8670-8680(2019).

    [87] Stearns H M. Iterative methods for high precision motion control with application to a wafer scanner system[D](2011).

    [88] Evers E, van de Wal M, Oomen T. Beyond decentralized wafer/reticle stage control design: a double-Youla approach for enhancing synchronized motion[J]. Control Engineering Practice, 83, 21-32(2019).

    [89] Heertjes M F, Temizer B, Schneiders M. Self-tuning in master-slave synchronization of high-precision stage systems[J]. Control Engineering Practice, 21, 1706-1715(2013).

    [90] Li L L, Hu S, Zhao L X et al. A new synchronization control method of wafer and reticle stage in step and scan lithographic equipment[J]. Optik, 124, 6861-6865(2013).

    [91] van Zundert J, Oomen T, Verhaegh J et al. Beyond performance/cost tradeoffs in motion control: a multirate feedforward design with application to a dual-stage wafer system[J]. IEEE Transactions on Control Systems Technology, 28, 448-461(2020).

    [92] Zhu H Y, Pang C K, Teo T J. Integrated servo-mechanical design of a fine stage for a coarse/fine dual-stage positioning system[J]. IEEE/ASME Transactions on Mechatronics, 21, 329-338(2016).

    [93] Salton A T, Chen Z Y, Zheng J C et al. Constrained optimal preview control of dual-stage actuators[J]. IEEE/ASME Transactions on Mechatronics, 21, 1179-1184(2016).

    [94] Lambregts C J H, Heertjes M F, van der Veek B J. Multivariable feedback control in stage synchronization[C], 4149-4154(2015).

    [95] Looijen V A, Heertjes M F. Robust synchronization of motion in wafer scanners using particle swarm optimization[C], 1102-1107(2018).

    [96] Mishra S, Yeh W, Tomizuka M. Iterative learning control design for synchronization of wafer and reticle stages[C], 3908-3913(2008).

    [97] Lewin C. Motion control gets gradually better[J]. Machine Design, 66, 90-94(1994).

    [98] Zang Q, Huang J, Liang Z. Slosh suppression for infinite modes in a moving liquid container[J]. IEEE/ASME Transactions on Mechatronics, 20, 217-225(2015).

    [99] Zang Q, Huang J. Dynamics and control of three-dimensional slosh in a moving rectangular liquid container undergoing planar excitations[J]. IEEE Transactions on Industrial Electronics, 62, 2309-2318(2015).

    [100] Haschke R, Weitnauer E, Ritter H. On-line planning of time-optimal, jerk-limited trajectories[C], 3248-3253(2008).

    [101] Piazzi A, Visioli A. Global minimum-jerk trajectory planning of robot manipulators[J]. IEEE Transactions on Industrial Electronics, 47, 140-149(2000).

    [102] Erkorkmaz K, Altintas Y. High speed CNC system design. Part I: jerk limited trajectory generation and quintic spline interpolation[J]. International Journal of Machine Tools and Manufacture, 41, 1323-1345(2001).

    [103] Macfarlane S, Croft E A. Jerk-bounded manipulator trajectory planning: design for real-time applications[J]. IEEE Transactions on Robotics and Automation, 19, 42-52(2003).

    [104] Nguyen K D, Ng T C, Chen I M. On algorithms for planning S-curve motion profiles[J]. International Journal of Advanced Robotic Systems, 5, 99-106(2008).

    [105] Wu Z P, Chen X L. Fifth-order S-curve trajectory planning for step and scan operation of precision wafer stage[J]. Opto-Electronic Engineering, 39, 99-104(2012).

    [106] Li H Z, le M D, Gong Z M et al. Motion profile design to reduce residual vibration of high-speed positioning stages[J]. IEEE/ASME Transactions on Mechatronics, 14, 264-269(2009).

    [107] Lee A Y, Choi Y. Smooth trajectory planning methods using physical lirnits[J]. Journal of Mechanical Engineering Science, 229, 2127-2143(2015).

    [108] Tsay D M, Lin C F. Asymmetrical inputs for minimizing residual response[C], 235-240(2005).

    [109] Aspinwall D M. Acceleration profiles for minimizing residual response[J]. Journal of Dynamic Systems, Measurement, and Control, 102, 3-6(1980).

    [110] Meckl P H, Arestides P B. Optimized s-curve motion profiles for minimum residual vibration[C], 2627-2631(1998).

    [111] Shao H M, Liao D Z, Cheung J W F. System identification and profile planning for high accuracy servo system[M]. Xiong C H, Huang Y A, Xiong Y L, et al. Intelligent robotics and applications, 5314, 410-419(2008).

    [112] Kim Y O, Ha I J. Time-optimal control of a single-DOF mechanical system considering actuator dynamics[J]. IEEE Transactions on Control Systems Technology, 11, 919-932(2003).

    [113] Ha C W, Rew K H, Kim K S. Robust zero placement for motion control of lightly damped systems[J]. IEEE Transactions on Industrial Electronics, 60, 3857-3864(2013).

    [114] Rew K H, Kim K S. A closed-form solution to asymmetric motion profile allowing acceleration manipulation[J]. IEEE Transactions on Industrial Electronics, 57, 2499-2506(2010).

    [115] Ha C W, Rew K H, Kim K S et al. Tuning the S-curve motion profile in short distance case[C], 4975-4980(2013).

    [116] Smith O J M. Posicast control of damped oscillatory systems[J]. Proceedings of the IRE, 45, 1249-1255(1957).

    [117] Smith O J M[M]. Feedback control systems(1958).

    [118] Singer N C, Seering W P, Pasch K A. Shaping command inputs to minimize unwanted dynamics[P].

    [119] Singhose W, Seering W, Singer N. Residual vibration reduction using vector diagrams to generate shaped inputs[J]. Journal of Mechanical Design, 116, 654-659(1994).

    [120] Singer N C, Seering W P. Experimental verification of command shaping methods for controlling residual vibration in flexible robots[C], 1738-1744(1990).

    [121] Singer N C, Seering W P. Preshaping command inputs to reduce system vibration[J]. Journal of Dynamic Systems, Measurement, and Control, 112, 76-82(1990).

    [122] Yurkovich S, Tzes A P, Hillsley K L. Controlling coupled flexible links rotating in the horizontal plane[J]. Proceedings of the American Control Conference, 362-367(2009).

    [123] Jones S D, Ulsoy A G. An approach to control input shaping with application to coordinate measuring machines[J]. Journal of Dynamic Systems, Measurement, and Control, 121, 242-247(1999).

    [124] Khalid A, Huey J, Singhose W et al. Human operator performance testing using an input-shaped bridge crane[J]. Journal of Dynamic Systems, Measurement, and Control, 128, 835-841(2006).

    [125] Fortgang J, Singhose W, Marquez J J et al. Command shaping for micro-mills and CNC controllers[C], 4531-4536(2005).

    [126] Ha M T, Kang C G. Experimental analysis of natural frequency error to residual vibration in ZV, ZVD, and ZVDD shapers[C], 195-199(2013).

    [127] Singhose W, Derezinski S, Singer N. Extra-insensitive input shapers for controlling flexible spacecraft[J]. Journal of Guidance, Control, and Dynamics, 19, 385-391(1996).

    [128] Singhose W E, Porter L J, Singer N C. Vibration reduction using multi-hump extra-insensitive input shapers[J]. Proceedings of the American Control Conference, 3830-3830(1995).

    [129] Singer N C, Seering W P. An extension of command shaping methods for controlling residual vibration using frequency sampling[C], 800-805(1992).

    [130] Vaughan J, Yano A, Singhose W. Performance comparison of robust negative input shapers[C], 3257-3262(2008).

    [131] Kuo Y L, Singh T. Minimax design of prefilters for maneuvering flexible structures[C], 1-8(2002).

    [132] Chang T, Godbole K, Hou E. Optimal input shaper design for high-speed robotic workcells[J]. Journal of Vibration and Control, 9, 1359-1376(2003).

    [133] Singhose W, Crain E, Seering W. Convolved and simultaneous two-mode input shapers[J]. IEE Proceedings-Control Theory and Applications, 144, 515-520(1997).

    [134] Hyde J M, Seering W P. Inhibiting multiple mode vibration in controlled flexible systems[C], 2449-2454(1991).

    [135] Hyde J M, Seering W P. Using input command pre-shaping to suppress multiple mode vibration[C], 2604-2609(1991).

    [136] Kozak K, Ebert-Uphoff I, Singhose W. Locally linearized dynamic analysis of parallel manipulators and application of input shaping to reduce vibrations[J]. Journal of Mechanical Design, 126, 156-168(2004).

    [137] Tzes A, Englehart M, Yurkovich S. Input preshaping with frequency domain information for flexible-linkmanipulator control[C], 3565(1989).

    [138] Tzes A P, Yurkovich S. Adaptive precompensators for flexible-link manipulator control[C], 2083-2088(1989).

    [139] Magee D P, Book W J. Optimal filtering to minimize the elastic behavior in serial link manipulators[C], 2637-2642(1998).

    [140] Rhim S, Book W J. Adaptive command shaping using adaptive filter approach in time domain[C], 81-85(1999).

    [141] Rhim S, Book W J. Noise effect on adaptive command shaping methods for flexible manipulator control[J]. IEEE Transactions on Control Systems Technology, 9, 84-92(2001).

    [142] Rhim S, Book W J. Adaptive time-delay command shaping filter for flexible manipulator control[J]. IEEE/ASME Transactions on Mechatronics, 9, 619-626(2004).

    [143] Park J H, Rhim S S. Extraction of optimal time-delay in adaptive command shaping filter for flexible manipulator control[J]. Journal of Institute of Control, Robotics and Systems, 14, 564-572(2008).

    Yang Liu, Li Li, Siwen Chen, Jiubin Tan. Ultra-Precision Motion Stage Control Technology for IC Lithography[J]. Laser & Optoelectronics Progress, 2022, 59(9): 0922013
    Download Citation