• Journal of Semiconductors
  • Vol. 43, Issue 12, 122802 (2022)
Xiaojie Wang1, Zhanwei Shen2、*, Guoliang Zhang1, Yuyang Miao1, Tiange Li1, Xiaogang Zhu1, Jiafa Cai1, Rongdun Hong1、3, Xiaping Chen1, Dingqu Lin1, Shaoxiong Wu1, Yuning Zhang1, Deyi Fu1, Zhengyun Wu1, and Feng Zhang1、4、**
Author Affiliations
  • 1College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
  • 2Key Laboratory of Semiconductor Material Sciences, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 3Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
  • 4Jiujiang Research Institute of Xiamen University, Jiujiang 332000, China
  • show less
    DOI: 10.1088/1674-4926/43/12/122802 Cite this Article
    Xiaojie Wang, Zhanwei Shen, Guoliang Zhang, Yuyang Miao, Tiange Li, Xiaogang Zhu, Jiafa Cai, Rongdun Hong, Xiaping Chen, Dingqu Lin, Shaoxiong Wu, Yuning Zhang, Deyi Fu, Zhengyun Wu, Feng Zhang. A 4H-SiC semi-super-junction shielded trench MOSFET: p-pillar is grounded to optimize the electric field characteristics[J]. Journal of Semiconductors, 2022, 43(12): 122802 Copy Citation Text show less
    References

    [1] G Shin, W C Lee. High frequency switching inverter using Si and SiC. J Korean Institute Illumin Electr Instal Eng, 31, 45(2017).

    [2] T Hatakeyama, T Watanabe, T Shinohe et al. Impact ionization coefficients of 4H silicon carbide. Appl Phys Lett, 85, 1380(2004).

    [3] Y Gao, A Huang, S Krishnaswami et al. Comparison of static and switching characteristics of 1200V 4H-SiC BJT and 1200V Si-IGBT. Conf Rec IAS Annu Meet IEEE Ind Appl Soc, 1, 325(2006).

    [4] G Hosseini Aghdam. Comparison of Si and SiC power semiconductor devices in power electronics converters to be used in plug-In hybrid electric vehicles. EPE J, 22, 20(2012).

    [5] J Jordan, V Esteve, E Sanchis-Kilders et al. A comparative performance study of a 1200 V Si and SiC MOSFET intrinsic diode on an induction heating inverter. IEEE Trans Power Electron, 29, 2550(2013).

    [6] P Nayak, K Hatua. Parasitic inductance and capacitance-assisted active gate driving technique to minimize switching loss of SiC MOSFET. IEEE Trans Ind Electron, 64, 8288(2017).

    [7] D B Wang, Q Y Feng, X P Chen et al. Failure analysis and improvement of 60 V power UMOSFET. Microelectron Reliab, 54, 2782(2014).

    [8] M H Juang, W T Chen, C I Ou-Yang et al. Fabrication of trench-gate power MOSFETs by using a dual doped body region. Solid State Electron, 48, 1079(2004).

    [9] T Kim, K Kim. High breakdown voltage and low on-resistance 4H-SiC UMOSFET with source-trench optimization. ECS J Solid State Sci Technol, 8, Q147(2019).

    [10] Y Onishi, Y Hashimoto. Numerical analysis of specific on-resistance for trench gate superjunction MOSFETs. Jpn J Appl Phys, 54, 024101(2015).

    [11] Y Wang, H Lan, F Cao et al. A novel power UMOSFET with a variable K dielectric layer. Chin Phys B, 21, 068503(2012).

    [12] Y Wang, Y C Ma, Y Hao et al. Simulation study of 4H-SiC UMOSFET structure with p +-polySi/SiC shielded region. IEEE Trans Electron Devices, 64, 3719(2017).

    [13] X Zou, Z M Wu, W P Wang et al. Optimized design of 4H-SiC UMOSFET for high breakdown voltage. Proc SPIE 11567, AOPC 2020: Optical Sensing and Imaging Technology, 11567, 939(2020).

    [14] M Jozi, A A Orouji, M Fathipour. Control of electric field in 4H-SiC UMOSFET: Physical investigation. Phys E, 83, 107(2016).

    [15] J Roig, E Stefanov, F Morancho. Thermal behavior of a superjunction MOSFET in a high-current conduction. IEEE Trans Electron Devices, 53, 1712(2006).

    [16] Y Chen, Y C Liang, G S Samudra et al. Progressive development of superjunction power MOSFET devices. IEEE Trans Electron Devices, 55, 211(2008).

    [17] Y Xia, W J Chen, R Z Sun et al. A superjunction MOSFET with ultralow reverse recovery charge and low switching losses. J Electron Mater, 50, 6297(2021).

    [18] J Goh, K Kim. Low on-resistance 4H-SiC UMOSFET with local floating superjunction. J Comput Electron, 19, 234(2020).

    [19] W Saito, I Omura, S Aida et al. Semisuperjunction MOSFETs: New design concept for lower on-resistance and softer reverse-recovery body diode. IEEE Trans Electron Devices, 50, 1801(2003).

    [20] R S Saxena, M J Kumar. Polysilicon spacer gate technique to reduce gate charge of a trench power MOSFET. IEEE Trans Electron Devices, 59, 738(2012).

    [21] Y Wang, Y J Liu, C H Yu et al. A novel trench-gated power MOSFET with reduced gate charge. IEEE Electron Device Lett, 36, 165(2015).

    [22] H Feng, W T Yang, Y Onozawa et al. A new fin p-body insulated gate bipolar transistor with low miller capacitance. IEEE Electron Device Lett, 36, 591(2015).

    [23] S G Kim. Fabrication of superjunction trench gate power MOSFETs using BSG-doped deep trench of p-pillar. ETRI J, 35, 632(2013).

    [24] Q Y Huang, A Q Huang. Hybrid low-frequency switch for bridgeless PFC. IEEE Trans Power Electron, 35, 9982(2020).

    [25] Y Y Huh, J M Choi, J M Kim et al. A study on the optimization of deep-trench super junction metal oxide semiconductor field-effect transistor. J Nanoelectron Optoelectron, 16, 781(2021).

    [26] W Saito, I Omura, S Aida et al. Over 1000V semi-superjunction MOSFET with ultra-low on-resistance below the Si-limit. The 17th International Symposium on Power Semiconductor Devices and ICs, 27(2005).

    [27] P Vudumula, S Kotamraju. Design and optimization of SiC super-junction MOSFET using vertical variation doping profile. IEEE Trans Electron Devices, 66, 1402(2019).

    [28] Y Wang, H F Hu, C H Yu et al. High-performance split-gate enhanced UMOSFET with p-pillar structure. IEEE Trans Electron Devices, 60, 2302(2013).

    [29] Y Kobayashi, S Kyogoku, T Morimoto et al. High-temperature performance of 1.2 kV-class SiC super junction MOSFET. 2019 31st International Symposium on Power Semiconductor Devices and ICs, 31(2019).

    [30] T Masuda, Y Saito, T Kumazawa et al. 0.63 mΩ·cm 2/1170 V 4H-SiC super junction V-groove trench MOSFET. 2018 IEEE International Electron Devices Meeting(2018).

    [31] M Okada, S Kyogoku, T Kumazawa et al. Superior short-circuit performance of SiC superjunction MOSFET. 2020 32nd International Symposium on Power Semiconductor Devices and ICs, 70(2020).

    [32] P Shen, Y Wang, X J Li et al. Improved 4H-SiC UMOSFET with super-junction shield region. Chin Phys B, 30, 058502(2021).

    [33] K Cha, K Kim. 3.3 kV 4H-SiC DMOSFET with a source-contacted dummy gate for high-frequency applications. J Semicond, 42, 062801(2021).

    [34] X R Luo, T Liao, J Wei et al. A novel 4H-SiC trench MOSFET with double shielding structures and ultralow gate-drain charge. J Semicond, 40, 052803(2019).

    [35] J Wei, M Zhang, H P Jiang et al. Superjunction MOSFET with dual built-In Schottky diodes for fast reverse recovery: A numerical simulation study. IEEE Electron Device Lett, 40, 1155(2019).

    [36] H Kang, J Lee, K Lee et al. Trench angle: A key design factor for a deep trench superjunction MOSFET. Semicond Sci Technol, 30, 125008(2015).

    [37] Y D Wang, B X Duan, C Zhang et al. AC-SJ VDMOS with ultra‐low resistance. Micro Nano Lett, 15, 230(2020).

    [38] R Tian, a C Ma, u J M Wu et al. A review of manufacturing technologies for silicon carbide superjunction devices. J Semicond, 42, 061801(2021).

    [39] Z W Shen, F Zhang, G G Yan et al. High-frequency switching properties and low oxide electric field and energy loss in a reverse-channel 4H-SiC UMOSFET. IEEE Trans Electron Devices, 67, 4046(2020).

    [40] M Kim, J J Forbes, E A Hirsch et al. Evaluation of long-term reliability and overcurrent capabilities of 15-kV SiC MOSFETs and 20-kV SiC IGBTs during narrow current pulsed conditions. IEEE Trans Plasma Sci, 48, 3962(2020).

    [41] A Appaswamy, P Chakraborty, J D Cressler. Influence of interface traps on the temperature sensitivity of MOSFET drain-current variations. IEEE Electron Device Lett, 31, 387(2010).

    [42] R Z Chen, L X Wang, N X Jiu et al. Simulation and result analysis of split gate resurf stepped oxide UMOFSET with floating electrode for improved performance. Electronics, 8, 1553(2019).

    [43] J Yoon, K Kim. A 3.3 kV 4H-SiC split gate MOSFET with a central implant region for superior trade-off between static and switching performance. J Semicond, 42, 062803(2021).

    [44] R Z Chen, L X Wang, H K Zhang et al. A new split gate resurf stepped oxide UMOSFET structure with high doped epitaxial layer for improving figure of merit (FOM). Appl Sci, 10, 7895(2020).

    [45] Y Wang, H F Hu, L G Wang et al. Split gate resurf stepped oxide UMOSFET with p-pillar for improved performance. IET Power Electron, 7, 965(2014).

    [46] S S Ahmad, G Narayanan. Double pulse test based switching characterization of SiC MOSFET. 2017 National Power Electronics Conference, 319(2017).

    [47] Y Wang, W L Jiao, H F Hu et al. Split-gate-enhanced power UMOSFET with soft reverse recovery. IEEE Trans Electron Devices, 60, 2084(2013).

    [48] Q Liu, Q Wang, H Liu et al. Low on-resistance 1.2 kV 4H-SiC power MOSFET with Ron, sp of 3.4 mΩ· cm 2. J Semicond, 41, 062801(2020).

    [49] Z Han, G Song, Y Bai et al. A novel 4H-SiC MOSFET for low switching loss and high-reliability applications. Semicond Sci Technol, 35, 085017(2020).

    [50] K Tian, A Hallén, J W Qi et al. An improved 4H-SiC trench-gate MOSFET with low ON-resistance and switching loss. IEEE Trans Electron Devices, 66, 2307(2019).

    [51] J J An, S D Hu. Heterojunction diode shielded SiC split-gate trench MOSFET with optimized reverse recovery characteristic and low switching loss. IEEE Access7, 7, 28592(2019).

    Xiaojie Wang, Zhanwei Shen, Guoliang Zhang, Yuyang Miao, Tiange Li, Xiaogang Zhu, Jiafa Cai, Rongdun Hong, Xiaping Chen, Dingqu Lin, Shaoxiong Wu, Yuning Zhang, Deyi Fu, Zhengyun Wu, Feng Zhang. A 4H-SiC semi-super-junction shielded trench MOSFET: p-pillar is grounded to optimize the electric field characteristics[J]. Journal of Semiconductors, 2022, 43(12): 122802
    Download Citation