• Journal of Semiconductors
  • Vol. 41, Issue 6, 062402 (2020)
Chanrong Jiang, Changchun Chai, Chenxi Han, and Yintang Yang
Author Affiliations
  • School of Microelectronics, Xidian University, Xi’an 710071, China
  • show less
    DOI: 10.1088/1674-4926/41/6/062402 Cite this Article
    Chanrong Jiang, Changchun Chai, Chenxi Han, Yintang Yang. A high performance adaptive on-time controlled valley-current-mode DC–DC buck converter[J]. Journal of Semiconductors, 2020, 41(6): 062402 Copy Citation Text show less
    References

    [1] J Yu, I Hwang, N Kim. High performance CMOS integrated PWM/PFM dual-mode DC-DC buck converter. 2017 18th International Scientific Conference on Electric Power Engineering (EPE), 1(2017).

    [2] L Wang, F J Lin, Q Cui. Dual 3-phase buck converter for multi-core CPUs power supply in mobile devices. IEICE Electron Express, 14, 20170045(2017).

    [3] Y Ma, S Wang, S Zhang et al. A current mode buck/boost DC–DC converter with automatic mode transition and light load efficiency enhancement. IEICE Trans Electron, E98C, 496(2015).

    [4] J J Chen, J H Shen, Y S Hwang. High-efficiency fast-transient-response V2-controlled boost converter with small ESR capacitor. Electron Lett, 49, 1402(2013).

    [5] X Ke, J Sankman, D Ma. AO2T current mode buck converter with one-cycle transient response and sensorless current detection for medical meters. IEEE Applied Power Electronics Conference and Exposition (APEC)(2016).

    [6] X Chen, G Zhou, K Zhang et al. Improved constant on-time controlled buck converter with high output-regulation accuracy. Electron Lett, 51, 359(2015).

    [7] Y Yan, F C Lee, P Mattavelli et al. I2 average current mode control for switching converters. 2013 IEEE Applied Power Electronics Conference and Exposition - APEC(2013).

    [8] J J Chen, Y S Hwang, J H Chen et al. A new fast-response current-mode buck converter with improved I2-controlled techniques. IEEE Trans Very Large Scale Integr (VLSI) Syst, 26, 903(2018).

    [9] R Redl, J Sun. Ripple-based control of switching regulators-an overview. IEEE Trans Power Electron, 24, 2669(2010).

    [10] C F Lee, P K T Mok. A monolithic current-mode CMOS DC-DC converter with on-chip current-sensing technique. IEEE J Solid-State Circuits, 39, 3(2004).

    [11] B Sahu, G A Rincn-Mora. An accurate, low-voltage, CMOS switching power supply with adaptive on-time pulse-frequency modulation (PFM) control. IEEE Trans Circuits Syst I, 54, 312(2007).

    [12] H Nam, Y Ahn, J Roh. A buck converter with adaptive on-time PFM control and adjustable output voltage. Analog Integr Circuits Signal Process, 71, 327(2012).

    [13] Y Qiu, H Liu, X Chen. Digital average current-mode control of PWM DC–DC converters without current sensors. IEEE Trans Ind Electron, 57, 1670(2010).

    [14] A Barrado, R Vazquez, A Lazaro et al. Fast transient response with combined linear-non-linear control applied to buck converters. IEEE Power Electronics Specialists Conference(2002).

    [15] M C Lee, X Jing, P K T Mok. A 14V-output adaptive-off-time boost converter with quasi-fixed-frequency in full loading range. IEEE International Symposium of Circuits and Systems (ISCAS)(2011).

    [16] X Jing, P K T Mok, M C Lee. Current-slope-controlled adaptive-on-time DC-DC converter with fixed frequency and fast transient response. IEEE International Symposium on Circuits & Systems(2011).

    [17] Y Xu, J Xu, L Xu et al. Constant frequency turn-on time control dynamic voltage scaling boost converter. International Conference on Communications(2013).

    [18] X Jing, P K T Mok. A fast fixed-frequency adaptive-on-time boost converter with light load efficiency enhancement and predictable noise spectrum. IEEE J Solid-State Circuits, 48, 2442(2013).

    [19] Q Li, X Lai, L Zhong. Adaptive current-threshold detector for an adaptive on-time buck converter at light load. Analog Integr Circuits Signal Process, 95, 541(2018).

    [20] J Li, F C Lee. New modeling approach and equivalent circuit representation for current-mode control. IEEE Trans Power Electron, 25, 1218(2010).

    [21] H Shi, Z Sun, Y Xu et al. Design of the 1.0 V bandgap reference on chip. IEEE International Conference on ASIC(2016).

    [22] S P Huang, Q Y Feng, S J University. Design of a novel zero-cross detection circuit for synchronous buck converter. Chin J Electron Devices, 37, 408(2014).

    [23] B Yuan, X Q Lai, H Y Wang et al. High-efficient hybrid buck converter with switch-on-demand modulation and switch size control for wide-load low-ripple applications. IEEE Trans Microwave Theory Tech, 61, 3329(2013).

    [24] Y Y Jin, J P Xu, G H Zhou. Constant on-time digital peak voltage control for buck converter. Energy Conversion Congress & Exposition, 2030(2010).

    [25] M Gildersleeve, H P Forghanizadeh, S Member et al. A comprehensive power analysis and a highly efficient, mode-hopping DC–DC converter. IEEE Asia-pacific Conference on ASIC(2002).

    [26] C Huang, P K T Mok. A 100 MHz 82.4% efficiency package-bondwire based four-phase fully-integrated buck converter with flying capacitor for area reduction. IEEE J Solid-State Circuits, 48, 2977(2013).

    [27] P Li, L Xue, P Hazucha et al. A delay-locked loop synchronization scheme for high-frequency multiphase hysteretic DC–DC converters. IEEE J Solid-State Circuits, 44, 3131(2009).

    [28] B Lee, M K Song, A Maity et al. 10.7 A 25 MHz 4-phase SAW hysteretic DC–DC converter with 1-cycle APC achieving 190 ns tsettle to 4 A load transient and above 80% efficiency in 96.7% of the power range. Solid-State Circuits Conference(2017).

    [29] C K Teh, A Suzuki, M Yamada et al. 4.1 A 3-phase digitally controlled DC-DC converter with 88% ripple reduced 1-cycle phase adding/dropping scheme and 28% power saving CT/DT hybrid current control. IEEE International Solid-State Circuits Conference Digest of Technical Papers(2014).

    Chanrong Jiang, Changchun Chai, Chenxi Han, Yintang Yang. A high performance adaptive on-time controlled valley-current-mode DC–DC buck converter[J]. Journal of Semiconductors, 2020, 41(6): 062402
    Download Citation