• Journal of Semiconductors
  • Vol. 41, Issue 6, 062402 (2020)
Chanrong Jiang, Changchun Chai, Chenxi Han, and Yintang Yang
Author Affiliations
  • School of Microelectronics, Xidian University, Xi’an 710071, China
  • show less
    DOI: 10.1088/1674-4926/41/6/062402 Cite this Article
    Chanrong Jiang, Changchun Chai, Chenxi Han, Yintang Yang. A high performance adaptive on-time controlled valley-current-mode DC–DC buck converter[J]. Journal of Semiconductors, 2020, 41(6): 062402 Copy Citation Text show less

    Abstract

    This paper presents an AOT-controlled (adaptive-on-time, AOT) valley-current-mode buck converter for portable application. The buck converter with synchronous rectifier not only uses valley-current-mode control but also possesses hybrid-mode control functions at the same time. Due to the presence of the zero-current detection circuit, the converter can switch freely between the two operating modes without the need for an external mode selection circuit, which further reduces the design difficulty and chip area. The converter for the application of high power efficiency and wide current range is used to generate the voltage of 0.6–3.0 V with a battery source of 3.3–5.0 V, while the load current range is 0.05–2 A. The circuit can work in continuous conduction mode with constant frequency in high load current range. In addition, a stable output voltage can be obtained with small voltage ripple. In pace with the load current decreases to a critical value, the converter transforms into the discontinuous conduction mode smoothly. As the switching period increases, the switching loss decreases, which can significantly improve the conversion efficiency. The proposed AOT controlled valley current mode buck converter is integrated with standard 0.18 μm process and the simulation results show that the converter provides well-loaded regulations with power efficiency over 95%. When the circuit switches between the two conduction modes drastically, the response time can be controlled within 30 μs. The undershoot voltage is controlled within 25 mV under a large current hopping range.
    ${V_{\rm{L}}} = L \times \frac{{{\rm d}{i_{\rm{L}}}}}{{{\rm d}t}} \Rightarrow \Delta {I_{\rm{L}}} = \frac{{{V_{\rm{L}}}}}{L} \times \Delta T.$(1)

    View in Article

    $\Delta {I_{\rm{L}}}\left( + \right) = \frac{{\left( {{V_{{\rm{in}}}} - {V_{{\rm{DSP}}}} - {I_{\rm{L}}} {R_{\rm{L}}}} \right){{ - }}{V_{\rm{o}}}}}{L} \times {T_{{\rm{ON}}}}.$(2)

    View in Article

    $\Delta {I_{\rm{L}}}\left( - \right) = \frac{{{V_{\rm{o}}} + \left( {{V_{{\rm{DSN}}}} + {I_{\rm{L}}} {R_{\rm{L}}}} \right)}}{L} \times {T_{{\rm{OFF}}}}.$(3)

    View in Article

    ${T_{\rm{s}}} = \frac{{{V_{{\rm{in}}}} - {V_{{\rm{DSP}}}} + 2 {I_{\rm{L}}} {R_{\rm{L}}} + {V_{{\rm{DSN}}}}}}{{{V_{\rm{o}}} + {V_{{\rm{DSN}}}} + {I_{\rm{L}}} {R_{\rm{L}}}}} \times {T_{{\rm{ON}}}},$(4)

    View in Article

    ${T_{\rm{s}}} = \frac{{{V_{{\rm{in}}}}}}{{{V_{\rm{o}}}}} \times {T_{{\rm{ON}}}}.$(5)

    View in Article

    ${T_{{\rm{ON}}}} = \frac{{k{V_{{\rm{ref}}}}{C_{\rm{1}}}}}{{g{V_{{\rm{in}}}}}},$(6)

    View in Article

    ${T_{\rm{S}}} = \frac{{k{V_{{\rm{ref}}}}{C_{\rm{1}}}}}{{g{V_{\rm{o}}}}} \approx \frac{{k{C_{\rm{1}}}}}{{gm}},$(7)

    View in Article

    $\frac{{{V_{\rm{o}}}}}{{{V_{\rm{c}}}}} = \frac{1}{{{R_{\rm{i}}}}}\times\frac{1}{{1 + \dfrac{s}{{{Q_1}{\omega _1}}} + \dfrac{{{s^2}}}{{\omega _1^2}}}}\times\dfrac{{{R_{\rm{o}}}({R_{\rm{c}}}{C_{\rm{o}}}s + 1)}}{{{R_{\rm{o}}}{C_{\rm{o}}}s + 1}},$(8)

    View in Article

    ${V_{\rm{a}}} = - {I_{\rm{L}}} {R_{{\rm{ONN}}}}.$(9)

    View in Article

    $\begin{array}{l} \Delta {V_\rm{o}} = \Delta {V_\rm{c}} + \Delta {V_{\rm{ESR}}} = \Delta {i_\rm{L}}\left({R_{\rm{ESR}}} + \dfrac{1}{{8{f_\rm{s}}{C_\rm{o}}}}\right) \\ \,\quad\quad =\dfrac{{{V_\rm{o}}({V_{{\rm{in}}}} - {V_\rm{o}})}}{{{f_\rm{s}}L{V_{{\rm{in}}}}}}\left({R_{\rm{ESR}}} + \dfrac{1}{{8{f_\rm{s}}{C_\rm{o}}}}\right).\end{array}$(10)

    View in Article

    $\eta = \frac{{{V_{\rm{o1}}} - {V_{\rm{o2}}}}}{{{V_{\rm{ref}}}\left( {{I_{\rm{o1}}} - {I_{\rm{o2}}}} \right)}}.$(11)

    View in Article

    Chanrong Jiang, Changchun Chai, Chenxi Han, Yintang Yang. A high performance adaptive on-time controlled valley-current-mode DC–DC buck converter[J]. Journal of Semiconductors, 2020, 41(6): 062402
    Download Citation