• Laser & Optoelectronics Progress
  • Vol. 59, Issue 9, 0922028 (2022)
Zhijun Luo1、2、3, Ziyu Liu1、2、3, Shuhong Wang1、2、3, Duan Wang1、2、3, Zongsong Gan1、2、3、*, and Xinyao Du1、2、3
Author Affiliations
  • 1Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei , China
  • 2Key Laboratory of Information Storage System Ministry of Education of China, Huazhong University of Science and Technology, Wuhan 430074, Hubei , China
  • 3Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen 518057, Guangdong , China
  • show less
    DOI: 10.3788/LOP202259.0922028 Cite this Article Set citation alerts
    Zhijun Luo, Ziyu Liu, Shuhong Wang, Duan Wang, Zongsong Gan, Xinyao Du. Exploration to Next Generation of Lithography Technology: Concept, Technique, and Future of the 6th Generation of Super-Resolution Lithographic System[J]. Laser & Optoelectronics Progress, 2022, 59(9): 0922028 Copy Citation Text show less
    References

    [1] Hills G, Lau C, Wright A et al. Modern microprocessor built from complementary carbon nanotube transistors[J]. Nature, 572, 595-602(2019).

    [2] Qiu C G, Zhang Z Y, Xiao M M et al. Scaling carbon nanotube complementary transistors to 5-nm gate lengths[J]. Science, 355, 271-276(2017).

    [3] Hertel S, Waldmann D, Jobst J et al. Tailoring the graphene/silicon carbide interface for monolithic wafer-scale electronics[J]. Nature Communications, 3, 957(2012).

    [4] Kreupl F. Carbon-nanotube computer scaled up[J]. Nature, 572, 588-589(2019).

    [5] Bandyopadhyay S[M]. Physics of nanostructured solid state devices(2012).

    [6] Grimmett G[M]. What is percolation?(1999).

    [7] Fomenkov I, Schafgans A, Brandt D. Laser-produced plasma sources for high-volume-manufacturing EUV lithography[J]. Synchrotron Radiation News, 32, 3-8(2019).

    [8] Wood O. EUV lithography: new metrology challenges[C], 931, 375-381(2007).

    [9] Kaiser W, Kürz P. EUVL-extreme ultraviolet lithography laying the foundations for microchips of the next decade[J]. Optik & Photonik, 3, 35-38(2008).

    [10] Pu M B, Wang C T, Wang Y Q et al. Subwavelength electromagnetics below the diffraction limit[J]. Acta Physica Sinica, 66, 144101(2017).

    [11] Strukov D B, Snider G S, Stewart D R et al. The missing memristor found[J]. Nature, 453, 80-83(2008).

    [12] Debnath S, Linke N M, Figgatt C et al. Demonstration of a small programmable quantum computer with atomic qubits[J]. Nature, 536, 63-66(2016).

    [13] Arute F, Arya K, Babbush R et al. Quantum supremacy using a programmable superconducting processor[J]. Nature, 574, 505-510(2019).

    [14] Gan Z S, Cao Y Y, Jia B H et al. Dynamic modeling of superresolution photoinduced-inhibition nanolithography[J]. Optics Express, 20, 16871-16879(2012).

    [15] Gan Z, Cao Y, Evans R A et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size[J]. Nature Communications, 4, 2061(2013).

    [16] Hein B, Willig K I, Hell S W. Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell[J]. Proceedings of the National Academy of Sciences of the United States of America, 105, 14271-14276(2008).

    [17] Hanne J, Falk H J, Görlitz F et al. STED nanoscopy with fluorescent quantum dots[J]. Nature Communications, 6, 7127(2015).

    [18] Luo Z J, Liu Y N, Chen M L et al. Industrialization oriented technology of dual-beam super-resolution data storage[J]. Opto-Electronic Engineering, 46, 94-100(2019).

    [19] Gu M, Li X, Cao Y. Optical storage arrays: a perspective for future big data storage[J]. Light: Science & Applications, 3, e177(2014).

    Zhijun Luo, Ziyu Liu, Shuhong Wang, Duan Wang, Zongsong Gan, Xinyao Du. Exploration to Next Generation of Lithography Technology: Concept, Technique, and Future of the 6th Generation of Super-Resolution Lithographic System[J]. Laser & Optoelectronics Progress, 2022, 59(9): 0922028
    Download Citation