• Journal of Inorganic Materials
  • Vol. 35, Issue 11, 1290 (2020)
Ding SUN1、2, Yanyan DING1, Lingwei KONG3, Yuhong ZHANG2, Xiujuan GUO2, Liming WEI2, Li ZHANG4、*, and Lixin ZHANG1、*
Author Affiliations
  • 1School of Physics, Nankai University, Tianjin 300071, China
  • 2School of Electrical and Computer Engineering, Jilin Jianzhu University, Changchun 130118, China
  • 3School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, China
  • 4Institute of Photo Electronics thin Film Devices and Technology, Nankai University, Tianjin 300071, China
  • show less
    DOI: 10.15541/jim200019 Cite this Article
    Ding SUN, Yanyan DING, Lingwei KONG, Yuhong ZHANG, Xiujuan GUO, Liming WEI, Li ZHANG, Lixin ZHANG. First-principles Study on Mg Doping in Cu2ZnSnS4[J]. Journal of Inorganic Materials, 2020, 35(11): 1290 Copy Citation Text show less
    References

    [1] B MITZI D, O GUNAWAN, K TODOROV T et al. The path towards a high-performance solution-processed kesterite solar cell. Sol. Energy Mater. Sol. Cells, 95, 1421-1436(2011).

    [2] W WANG, T WINKLER M, O GUNAWAN et al. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv. Energy Mater., 4, 1301465(2013).

    [3] W SHOCKLEY, H QUEISSER. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys., 32, 510-519(1961).

    [4] T GOKMEN, O GUNAWAN, K TODOROV T et al. Band tailing and efficiency limitation in kesterite solar cells. Appl. Phys. Lett., 103, 103506(2013).

    [5] L MENG, F LI Y, B YAO et al. Mechanism of effect of intrinsic defects on electrical and optical properties of Cu2CdSnS4: an experimental and first-principles study. J. Phys. D Appl. Phys., 48, 445105(2015).

    [6] F OZEL, M KUS, A YAR et al. Fabrication of quaternary Cu2FeSnS4(CFTS) nanocrystalline fibers through electrospinning technique. J. Mater. Sci., 50, 777-783(2015).

    [7] J YU J, M DENG H, Q ZHANG et al. The role of sulfurization temperature on the morphological, structural and optical properties of electroplated Cu2MnSnS4 absorbers for photovoltaics. Mater. Lett., 233, 111-114(2018).

    [8] I SAPELI M M, T FERDAOUS M, A SHAHAHMADI S et al. Effects of Cr doping in the structural and optoelectronic properties of Cu2ZnSnS4(CZTS) thin film by magnetron co-sputtering. Mater. Lett., 221, 22-25(2018).

    [9] K MATSUBARA, A YAMADA, S ISHIZUKA et al. Wide-gap CIGS solar cells with Zn1-yMgyO transparent conducting film. MRS Proceed. Wide-gap CIGS solar cells with Zn1-yMgyO transparent conducting film. MRS Proceed, 865, 6(2005).

    [10] X GUO Y, J CHEN W, C JIANG J et al. The structural, morphological and optical-electrical characteristic of Cu2XSnS4(X:Cu,Mg) thin films fabricated by novel ultrasonic co-spray pyrolysis. Mater. Lett, 172, 68-71(2016).

    [11] L AGAWANE G, A VANALAKAR S, S KAMBLE A et al. Fabrication of Cu2(ZnxMg1-x)SnS4 thin films by pulsed laser deposition technique for solar cell applications. Mater. Sci. Semicond. Process., 76, 50-54(2018).

    [12] H KUO D, W WUBET. Mg dopant in Cu2ZnSnSe4: an n-type former and a promoter of electrical mobility up to 120 cm 2·V -1·s -1. J. Solid State Chem., 215, 122-127(2014).

    [13] T MAEDA, S NAKAMURA, T WADA. First-principles study on Cd doping in Cu2ZnSnS4 and Cu2ZnSnSe4. Jpn. J. Appl. Phys, 51(2012).

    [14] D SUN, Y DING Y, W KONG L et al. First principles calculation of the electronic-optical properties of Cu2MgSn(SxSe1-x)4. Optoelectronics Letters, 16, 29-33(2020).

    [15] Y XIAO Z, Y LI, B YAO et al. Bandgap engineering of Cu2CdxZn1-xSnS4 alloy for photovoltaic applications: a complementary experimental and first-principles study. J. Appl. Phys., 114, 183506(2013).

    [16] G KRESSE, J FURTHMUELLER. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci, 6, 15-50(1996).

    [17] G KRESSE, D JOUBERT. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 59, 1758-1775(1999).

    [18] J HEYD, E SCUSERIA G, M ERNZERHOF. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys., 118, 8207-8215(2003).

    [19] P PERDEW J, K BURKE, M ERNZERHOF. Generalized gradient approximation made simple. Phys. Rev. Lett., 77, 3865-3868(1997).

    [20] W XIAO, N WANG J, S ZHAO X et al. Intrinsic defects and Na doping in Cu2ZnSnS4: a density-functional theory study. Sol. Energy, 116, 125-132(2015).

    [21] B ZHANG S, E NORTHRUP J. Chemical potential dependence of defect formation energies in GaAs: application to Ga self-diffusion. Phys. Rev. Lett., 67, 2339-2342(1991).

    [22] S LANY, A ZUNGER. Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: case studies for ZnO and GaAs. Phys. Rev. B, 78, 1879-1882(2008).

    [23] U DASGUPTA, K SAHA S, J PAL A. Fully-depleted pn-junction solar cells based on layers of Cu2ZnSnS4 (CZTS) and copper-diffused AgInS2 ternary nanocrystals. Sol. Energy Mater. Sol. Cells, 124, 79-85(2014).

    [24] P KOMSA H, T RANTALA T, A PASQUARELLO. Finite-size supercell correction schemes for charged defect calculations. Phys. Rev. B., 86, 045112(2012).

    [25] J PAIER, R ASAHI, A NAGOYA et al. Cu2ZnSnS4 as a potential photovoltaic material: a hybrid Hartree-Fock density functional theory study. Phys. Rev. B, 79, 115126.

    [26] L ZHANG X, M HAN M, H ZHENG X et al. The suppression of Cu-related charge localized defects in Cu2ZnSnS4 thin film solar cells. Sol. Energy Mater. Sol. Cells, 180, 118-122(2018).

    [27] L ZHANG X, M HAN M, Z ZHENG et al. The instability of S vacancies in Cu2ZnSnS4. RSC Adv, 6, 15424-15429(2016).

    [28] L ZHANG X, M HAN M, Z ZHENG et al. The role of Sb in solar cell material Cu2ZnSnS4. J. Mater. Chem. A, 5, 6606-6612(2017).

    [29] N NAGHAVI, D ABOU-RAS, N ALLSOP et al. Buffer layers and transparent conducting oxides for chalcopyrite Cu(In,Ga)(S,Se)2 based thin film photovoltaics: present status and current developments. Prog. Photovoltaics, 18, 411-433(2010).

    [30] Y CHEN S, A WALSH, G GONG X et al. Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers. Adv. Mater., 25, 1522-1539(2013).

    Ding SUN, Yanyan DING, Lingwei KONG, Yuhong ZHANG, Xiujuan GUO, Liming WEI, Li ZHANG, Lixin ZHANG. First-principles Study on Mg Doping in Cu2ZnSnS4[J]. Journal of Inorganic Materials, 2020, 35(11): 1290
    Download Citation