• Journal of Inorganic Materials
  • Vol. 35, Issue 11, 1290 (2020)
Ding SUN1、2, Yanyan DING1, Lingwei KONG3, Yuhong ZHANG2, Xiujuan GUO2, Liming WEI2, Li ZHANG4、*, and Lixin ZHANG1、*
Author Affiliations
  • 1School of Physics, Nankai University, Tianjin 300071, China
  • 2School of Electrical and Computer Engineering, Jilin Jianzhu University, Changchun 130118, China
  • 3School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, China
  • 4Institute of Photo Electronics thin Film Devices and Technology, Nankai University, Tianjin 300071, China
  • show less
    DOI: 10.15541/jim200019 Cite this Article
    Ding SUN, Yanyan DING, Lingwei KONG, Yuhong ZHANG, Xiujuan GUO, Liming WEI, Li ZHANG, Lixin ZHANG. First-principles Study on Mg Doping in Cu2ZnSnS4[J]. Journal of Inorganic Materials, 2020, 35(11): 1290 Copy Citation Text show less

    Abstract

    To date, solar cells with efficiency of 12.6% has been demonstrated via a hydrazine-based solution approach. Despite this progress, performance of Cu2ZnSn(S,Se)4 solar cells remains far lower than the Shockely- Quiser theoretical limit. We performed density functional theory calculations with hybrid functional approach to investigate the Mg-related defects in the kesterite structure of the Cu2ZnSnS4 (CZTS) solar cell material. The substitution energies of Mg atom in CZTS were calculated in consideration of the atomic chemical potentials of the constituent elements of Cu, Zn, Sn, and the doping atom of Mg. From our calculation results, Mg doping in CZTS under certain Sn-rich growth condition is expected to convert the conduction from p-type to n-type. The present study provides a theoretical basis for exploring practical applications of Mg doping in CZTS solar cells.
    $\begin{align} & \Delta {{H}_{\text{ }\!\!\alpha\!\!\text{ },\text{q}}}({{E}_{\text{F}}},{{\mu }_{i}})=({{E}_{\alpha ,\text{q}}}-{{E}_{\text{h}}})+ \\ & \ \ \ \ \sum\limits_{i}{{{n}_{i}}({{E}_{i}}+{{\mu }_{i}})}+q({{\varepsilon }_{\text{VBM}}}+{{E}_{\text{F}}}) \\ \end{align}$

    View in Article

    $2{{\mu }_{\text{Cu}}}\text{+}{{\mu }_{\text{Zn}}}\text{+}{{\mu }_{\text{Sn}}}\text{+}4{{\mu }_{\text{S}}}=\Delta {{H}_{\text{f}}}(\text{C}{{\text{u}}_{2}}\text{ZnSn}{{\text{S}}_{4}})\text{=}-\text{4}\text{.81}$

    View in Article

    ${{\mu }_{\text{Cu}}}\text{}0,\text{ }{{\mu }_{\text{Zn}}}\text{}0,\text{ }{{\mu }_{\text{Sn}}}\text{}0,\text{ }{{\mu }_{\text{S}}}\text{}0$

    View in Article

    ${{\mu }_{\text{Sn}}}\text{+}2{{\mu }_{\text{S}}}\text{}\Delta {{H}_{\text{f}}}(\text{Sn}{{\text{S}}_{\text{2}}})=-1.31\text{ eV}$

    View in Article

    Ding SUN, Yanyan DING, Lingwei KONG, Yuhong ZHANG, Xiujuan GUO, Liming WEI, Li ZHANG, Lixin ZHANG. First-principles Study on Mg Doping in Cu2ZnSnS4[J]. Journal of Inorganic Materials, 2020, 35(11): 1290
    Download Citation