• Journal of Semiconductors
  • Vol. 43, Issue 2, 021301 (2022)
Yuan Yuan, Bassem Tossoun, Zhihong Huang, Xiaoge Zeng, Geza Kurczveil, Marco Fiorentino, Di Liang, and Raymond G. Beausoleil
Author Affiliations
  • Hewlett Packard Labs, Hewlett Packard Enterprise, Milpitas, CA 95035, USA
  • show less
    DOI: 10.1088/1674-4926/43/2/021301 Cite this Article
    Yuan Yuan, Bassem Tossoun, Zhihong Huang, Xiaoge Zeng, Geza Kurczveil, Marco Fiorentino, Di Liang, Raymond G. Beausoleil. Avalanche photodiodes on silicon photonics[J]. Journal of Semiconductors, 2022, 43(2): 021301 Copy Citation Text show less
    References

    [1] M Piels, J E Bowers. Photodetectors for silicon photonic integrated circuits. Photodetectors. Amsterdam: Elsevier, 3(2016).

    [2] J M Fédéli, L Virot, L Vivien et al. High-performance waveguide-integrated germanium PIN photodiodes for optical communication applications. 2014 7th Int Silicon Ger Technol Device Meet ISTDM, 131(2014).

    [3] L Virot, D Benedikovic, B Szelag et al. Integrated waveguide PIN photodiodes exploiting lateral Si/Ge/Si heterojunction. Opt Express, 25, 19487(2017).

    [4] K Y Sun, T C Tzu, R Costanzo et al. Ge-on-Si balanced periodic traveling-wave photodetector. 2019 IEEE Photonics Conference (IPC), 1(2019).

    [5] L Bogaert, K van Gasse, T Spuesens et al. Silicon photonics traveling wave photodiode with integrated star coupler for high-linearity mm-wave applications. Opt Express, 26, 34763(2018).

    [6] X J Xie, Q G Zhou, E Norberg et al. High-power and high-speed heterogeneously integrated waveguide-coupled photodiodes on silicon-on-insulator. J Lightwave Technol, 34, 73(2016).

    [7] G Muliuk, J Zhang, J Goyvaerts et al. High-yield parallel transfer print integration of III-V substrate-illuminated C-band photodiodes on silicon photonic integrated circuits. Proc SPIE 10923, Silicon Photonics XIV, 1092(2019).

    [8] K Y Sun, D Jung, C Shang et al. Low dark current III–V on silicon photodiodes by heteroepitaxy. Opt Express, 26, 13605(2018).

    [9] K Y Sun, J Y Gao, D Jung et al. 40 Gbit/s waveguide photodiode using III–V on silicon heteroepitaxy. Opt Lett, 45, 2954(2020).

    [10] M Casalino, M Iodice, L Sirleto et al. Asymmetric MSM sub-bandgap all-silicon photodetector with low dark current. Opt Express, 21, 28072(2013).

    [11] H Cansizoglu, A S Mayet, S Ghandiparsi et al. Dramatically enhanced efficiency in ultra-fast silicon MSM photodiodes via light trapping structures. IEEE Photonics Technol Lett, 31, 1619(2019).

    [12] D Akinwande, C Huyghebaert, C H Wang et al. Graphene and two-dimensional materials for silicon technology. Nature, 573, 507(2019).

    [13] J F Gonzalez Marin, D Unuchek, K Watanabe et al. MoS2 photodetectors integrated with photonic circuits. npj 2D Mater Appl, 3, 1(2019).

    [14] J C Campbell. Recent advances in avalanche photodiodes. J Lightwave Technol, 34, 278(2016).

    [15] D Benedikovic, L Virot, G Aubin et al. Silicon–germanium receivers for short-wave-infrared optoelectronics and communications. Nanophotonics, 10, 1059(2021).

    [16] R J McIntyre. Multiplication noise in uniform avalanche diodes. IEEE Trans Electron Devices, ED-13,164(1966).

    [17] R B Emmons. Avalanche-photodiode frequency response. J Appl Phys, 38, 3705(1967).

    [18] D Benedikovic, L Virot, G Aubin et al. 40 Gbps heterostructure germanium avalanche photo receiver on a silicon chip. Optica, 7, 775(2020).

    [19] S A Srinivasan, M Berciano, P de Heyn et al. 27 GHz silicon-contacted waveguide-coupled Ge/Si avalanche photodiode. J Lightwave Technol, 38, 3044(2020).

    [20] J Zhang, B P P Kuo, S Radic. 64Gb/s PAM4 and 160Gb/s 16QAM modulation reception using a low-voltage Si-Ge waveguide-integrated APD. Opt Express, 28, 23266(2020).

    [21] X G Zeng, Z H Huang, B H Wang et al. Silicon–germanium avalanche photodiodes with direct control of electric field in charge multiplication region. Optica, 6, 772(2019).

    [22] Z H Huang, C Li, D Liang et al. 25 Gbps low-voltage waveguide Si–Ge avalanche photodiode. Optica, 3, 793(2016).

    [23] Y M Kang, H D Liu, M Morse et al. Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product. Nat Photonics, 3, 59(2009).

    [24]

    [25] X W Li, X G Zheng, S L Wang et al. Calculation of gain and noise with dead space for GaAs and AlxGa1–xAs avalanche photodiode. IEEE Trans Electron Devices, 49, 1112(2002).

    [26] G J Rees, J R David. Nonlocal impact ionization and avalanche multiplication. J Phys D, 43, 243001(2010).

    [27] E Jamil, J S Cheong, J P David et al. On the analytical formulation of excess noise in avalanche photodiodes with dead space. Opt Express, 24, 21597(2016).

    [28] Y Yuan, Z H Huang, B H Wang et al. 64 Gbps PAM4 Si-Ge waveguide avalanche photodiodes with excellent temperature stability. J Lightwave Technol, 38, 4857(2020).

    [29] C N Harrison, J P R David, M Hopkinson et al. Temperature dependence of avalanche multiplication in submicron Al0.6Ga0.4As diodes. J Appl Phys, 92, 7684(2002).

    [30] A H Jones, Y Yuan, M Ren et al. AlxIn1–xAsySb1–y photodiodes with low avalanche breakdown temperature dependence. Opt Express, 25, 24340(2017).

    [31]

    [32] B H Wang, Z H Huang, Y Yuan et al. 64 Gb/s low-voltage waveguide SiGe avalanche photodiodes with distributed Bragg reflectors. Photon Res, 8, 1118(2020).

    [33] Y Yuan, Z H Huang, X G Zeng et al. High responsivity Si-Ge waveguide avalanche photodiodes enhanced by loop reflector. IEEE J Sel Top Quantum Electron, 28, 1(2022).

    [34] A Y Liu, J Bowers. Photonic integration with epitaxial III–V on silicon. IEEE J Sel Top Quantum Electron, 24, 1(2018).

    [35] Y Han, Y Xue, Z Yan et al. Selectively grown III-V lasers for integrated Si-photonics. J Lightwave Technol, 39, 940(2021).

    [36] D Liang, J E Bowers. Recent progress in heterogeneous III-V-on-silicon photonic integration. Light: Adv Manuf, 2, 1(2021).

    [37] N Li, R Sidhu, X W Li et al. InGaAs/InAlAs avalanche photodiode with undepleted absorber. Appl Phys Lett, 82, 2175(2003).

    [38] M Nada, H Yokoyama, Y Muramoto et al. A 50-Gbit/s vertical illumination avalanche photodiode for 400-Gbit/s Ethernet systems. Opt Express, 22, 14681(2014).

    [39] M Nada, M Nakamura, H Matsuzaki. 25-Gbit/s burst-mode optical receiver using high-speed avalanche photodiode for 100-Gbit/s optical packet switching. Opt Express, 22, 443(2014).

    [40] Y L Zhao, D D Zhang, L Qin et al. InGaAs–InP avalanche photodiodes with dark current limited by generation-recombination. Opt Express, 19, 8546(2011).

    [41] X Meng, C H Tan, S Dimler et al. 1550 nm InGaAs/InAlAs single photon avalanche diode at room temperature. Opt Express, 22, 22608(2014).

    [42] M G Liu, C Hu, X G Bai et al. High-performance InGaAs/InP single-photon avalanche photodiode. IEEE J Sel Top Quantum Electron, 13, 887(2007).

    [43] M Ren, X R Gu, Y Liang et al. Laser ranging at 1550 nm with 1-GHz sine-wave gated InGaAs/InP APD single-photon detector. Opt Express, 19, 13497(2011).

    [44] X B Liu, Li Li. Design of the optical system of flash lidar based on an APD array. Infrared Laser Eng, 38, 893(2009).

    [45] B Schwarz. Mapping the world in 3D. Nat Photonics, 4, 429(2010).

    [46] G Adamo, A Busacca. Time of flight measurements via two LiDAR systems with SiPM and APD. 2016 AEIT International Annual Conference (AEIT)(2016).

    [47] A W Elshaari, W Pernice, K Srinivasan et al. Hybrid integrated quantum photonic circuits. Nat Photonics, 14, 285(2020).

    [48]

    [49] S Keyvaninia, M Muneeb, S Stanković et al. Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate. Opt Mater Express, 3, 35(2012).

    [50] J Zhang, G Muliuk, J Juvert et al. III-V-on-Si photonic integrated circuits realized using micro-transfer-printing. APL Photonics, 4, 110803(2019).

    [51] I Lucci, S Charbonnier, L Pedesseau et al. Universal description of III-V/Si epitaxial growth processes. Phys Rev Materials, 2, 060401(2018).

    [52] Y Yuan, D Jung, K Sun et al. III-V on silicon avalanche photodiodes by heteroepitaxy. Opt Lett, 44, 3538(2019).

    [53] T Nakata, J Ishihara, K Makita et al. Multiplication noise characterization of InAlAs-APD with heterojunction. IEEE Photonics Technol Lett, 21, 1852(2009).

    [54] M Jutzi, M Berroth, G Wöhl et al. Zero biased Ge-on-Si photodetector on a thin buffer with a bandwidth of 3.2 GHz at 1300 nm. Mater Sci Semicond Process, 8, 423(2005).

    [55] L Colace, P Ferrara, G Assanto et al. Low dark-current germanium-on-silicon near-infrared detectors. IEEE Photonics Technol Lett, 19, 1813(2007).

    [56] B Tossoun, G Kurczvcil, C Zhang et al. High-speed 1310 nm hybrid silicon quantum dot photodiodes with ultra-low dark current. 2018 76th Device Research Conference (DRC), 1(2018).

    [57] A W Fang, H Park, R Jones et al. A continuous-wave hybrid AlGaInAs-silicon evanescent laser. IEEE Photon Technol Lett, 18, 1143(2006).

    [58] J E Bowers. Evolution of photonic integrated circuits. 2017 75th Annual Device Research Conference (DRC), 1(2017).

    [59] B Tossoun, G Kurczveil, C Zhang et al. Indium arsenide quantum dot waveguide photodiodes heterogeneously integrated on silicon. Optica, 6, 1277(2019).

    [60] B Tossoun, S Srinivasan, A Descos et al. High-speed heterogeneous quantum dot avalanche photodiodes with polarization dependent gain. 2020 IEEE Photonics Conference (IPC), 1(2020).

    [61] B Tossoun, G Kurczveil, S Srinivasan et al. 32  Gbps heterogeneously integrated quantum dot waveguide avalanche photodiodes on silicon. Opt Lett, 46, 3821(2021).

    [62] H Ishikawa, H Shoji, Y Nakata et al. Self-organized quantum dots and quantum dot lasers. J Vac Sci Technol A, 16, 794(1998).

    [63] D Liang, J E Bowers. Highly efficient vertical outgassing channels for low-temperature InP-to-silicon direct wafer bonding on the silicon-on-insulator substrate. J Vac Sci Technol B, 26, 1560(2008).

    [64] P Jin, C M Li, Z Y Zhang et al. Quantum-confined Stark effect and built-in dipole moment in self-assembled InAs∕GaAs quantum dots. Appl Phys Lett, 85, 2791(2004).

    [65] T Umezawa, K Akahane, A Matsumoto et al. Polarization dependence of avalanche multiplication factor in 1.5 μm quantum dot waveguide photodetector. Conference on Lasers and Electro-Optics(2016).

    [66] J Wu, Q Jiang, S M Chen et al. Monolithically integrated InAs/GaAs quantum dot mid-infrared photodetectors on silicon substrates. ACS Photonics, 3, 749(2016).

    [67] I Sandall, J S Ng, J P R David et al. 1300 nm wavelength InAs quantum dot photodetector grown on silicon. Opt Express, 20, 10446(2012).

    [68] Y T Wan, Z Y Zhang, R L Chao et al. Monolithically integrated InAs/InGaAs quantum dot photodetectors on silicon substrates. Opt Express, 25, 27715(2017).

    [69] B L Chen, Y T Wan, Z Y Xie et al. Low dark current high gain InAs quantum dot avalanche photodiodes monolithically grown on Si. ACS Photonics, 7, 528(2020).

    [70] A Pauchard, M Bitter, D Sengupta et al. High-performance InGaAs-on-silicon avalanche photodiodes. Optical Fiber Communication Conference and Exhibit, 345(2002).

    [71] T Umezawa, K Akahane, A Kanno et al. Investigation of a 1.5-µm-wavelength InAs-quantum-dot absorption layer for high-speed photodetector. Appl Phys Express, 7, 032201(2014).

    Yuan Yuan, Bassem Tossoun, Zhihong Huang, Xiaoge Zeng, Geza Kurczveil, Marco Fiorentino, Di Liang, Raymond G. Beausoleil. Avalanche photodiodes on silicon photonics[J]. Journal of Semiconductors, 2022, 43(2): 021301
    Download Citation