• Journal of Semiconductors
  • Vol. 40, Issue 10, 101304 (2019)
Xuhan Guo, An He, and Yikai Su
Author Affiliations
  • State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    DOI: 10.1088/1674-4926/40/10/101304 Cite this Article
    Xuhan Guo, An He, Yikai Su. Recent advances of heterogeneously integrated III–V laser on Si[J]. Journal of Semiconductors, 2019, 40(10): 101304 Copy Citation Text show less
    References

    [1] C Doerr. Silicon photonic integration in telecommunications. Front Phys Rev, 3(2015).

    [2] R Soref. The past, present, and future of silicon photonics. IEEE J Sel Top Quantum Electron, 12, 1678(2006).

    [3] M J R Heck, J F Bauters, M L Davenport et al. Ultra-low loss waveguide platform and its integration with silicon photonics. Laser Photonics Rev, 8, 667(2014).

    [4] T R Graham, Z M Goran, Frederic Y G Y. et al. Recent breakthroughs in carrier depletion based silicon optical modulators. Nanophotonics, 3, 229(2014).

    [5] G T Reed, G Mashanovich, F Y Gardes et al. Silicon optical modulators. Nat Photon, 4, 518(2010).

    [6] M Casalino, G Coppola, R M De La Rue et al. State-of-the-art all-silicon sub-bandgap photodetectors at telecom and datacom wavelengths. Laser Photonics Rev, 10, 895(2016).

    [7] T David, Z Aaron, E B John et al. Roadmap on silicon photonics. J Opt, 18, 073003(2016).

    [8] H Liu, T Wang, Q Jiang et al. Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate. Nat Photon, 5, 416(2011).

    [9] S Zhu, B Shi, Q Li et al. Room-temperature electrically-pumped 1.5 μm InGaAs/InAlGaAs laser monolithically grown on on-axis (001) Si. Opt Express, 26, 14514(2018).

    [10] A Y Liu, C Zhang, J Norman et al. High performance continuous wave 1.3 μm quantum dot lasers on silicon. Appl Phys Lett, 104, 041104(2014).

    [11] M Liao, S Chen, J S Park et al. III–V quantum-dot lasers monolithically grown on silicon. Semicond Sci Technol, 33, 123002(2018).

    [12] N Hatori, T Shimizu, M Okano et al. A hybrid integrated light source on a silicon platform using a trident spot-size converter. J Lightwave Technol, 32, 1329(2014).

    [13] M L Davenport, M A Tran, T Komljenovic et al. Heterogeneous integration of III–V lasers on Si by bonding. Semiconductors and Semimetals, 99, 139(2018).

    [14] T Komljenovic, M Davenport, J Hulme et al. Heterogeneous silicon photonic integrated circuits. J Lightwave Technol, 34, 20(2016).

    [15] D Liang, G Roelkens, R Baets et al. Hybrid integrated platforms for silicon photonics. Materials, 3, 1782(2010).

    [16] D Liang, M Fiorentino, S Srinivasan et al. Low threshold electrically-pumped hybrid silicon microring lasers. IEEE J Sel Top Quantum Electron, 17, 1528(2011).

    [17] S Keyvaninia, M Muneeb, S Stanković et al. Ultra-thin DVS-BCB adhesive bonding of III–V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate. Opt Mater Express, 3, 35(2013).

    [18] J Van Campenhout, P Rojo-Romeo, P Regreny et al. Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit. Opt Express, 15, 6744(2007).

    [19] Y D Koninck, G Roelkens, R Baets. Design of a hybrid III–V-on-silicon microlaser with resonant cavity mirrors. IEEE Photonics J, 5, 2700413(2013).

    [20] B Ben Bakir, A Descos, N Olivier et al. Electrically driven hybrid Si/III–V Fabry-Pérot lasers based on adiabatic mode transformers. Opt Express, 19, 10317(2011).

    [21] S Keyvaninia, G Roelkens, D Van Thourhout et al. Demonstration of a heterogeneously integrated III–V/SOI single wavelength tunable laser. Opt Express, 21, 3784(2013).

    [22] S Keyvaninia, S Verstuyft, L Van Landschoot et al. Heterogeneously integrated III–V/silicon distributed feedback lasers. Opt Lett, 38, 5434(2013).

    [23] X Sun, H C Liu, A Yariv. Adiabaticity criterion and the shortest adiabatic mode transformer in a coupled-waveguide system. Opt Lett, 34, 280(2009).

    [24] X Sun, A Yariv. Engineering supermode silicon/III–V hybrid waveguides for laser oscillation. J Opt Soc Am B, 25, 923(2008).

    [25] A Yariv, X Sun. Supermode Si/III–V hybrid lasers, optical amplifiers and modulators: A proposal and analysis. Opt Express, 15, 9147(2007).

    [26] G Kurczveil, M J R Heck, J D Peters et al. An integrated hybrid silicon multiwavelength AWG laser. IEEE J Sel Top Quantum Electron, 17, 1521(2011).

    [27] S Uvin, S Kumari, A De Groote et al. 1.3 μm InAs/GaAs quantum dot DFB laser integrated on a Si waveguide circuit by means of adhesive die-to-wafer bonding. Opt Express, 26, 18302(2018).

    [28] J E Bowers, D Huang, D Jung et al. Realities and challenges of III–V/Si integration technologies. Optical Fiber Communication Conference (OFC), Tu3E.1(2019).

    [29]

    [30] D Ohana, U Levy. Mode conversion based on dielectric metamaterial in silicon. Opt Express, 22, 27617(2014).

    [31] Z Wang, A Abbasi, E Dave et al. Novel light source integration approaches for silicon photonics. Laser Photonics Rev, 11, 1700063(2017).

    [32] G Roelkens, L Liu, D Liang et al. III–V/silicon photonics for on-chip and intra-chip optical interconnects. Laser Photonics Rev, 4, 751(2010).

    [33] A W Fang, E Lively, Y H Kuo et al. A distributed feedback silicon evanescent laser. Opt Express, 16, 4413(2008).

    [34] A Abbasi, S Keyvaninia, t J Verbist et al. 43 Gb/s NRZ-OOK direct modulation of a heterogeneously integrated InP/Si DFB laser. J Lightwave Technol, 35, 1235(2017).

    [35] A Abbasi, B Moeneclaey, J Verbist et al. Direct and electroabsorption modulation of a III–V-on-silicon DFB laser at 56 Gb/s. IEEE J Sel Top Quantum Electron, 23, 1(2017).

    [36] Y Zou, S Chakravarty, C J Chung et al. Mid-infrared silicon photonic waveguides and devices. Photonics Res, 6(2018).

    [37] R Wang, S Sprengel, A Malik et al. Heterogeneously integrated IIIV-on-silicon 2.3x μm distributed feedback lasers based on a typeII active region. Appl Phys Lett, 109, 221111(2016).

    [38] R Wang, S Sprengel, G Boehm et al. Broad wavelength coverage 2.3 μm III–V-on-silicon DFB laser array. Optica, 4, 972(2017).

    [39] P J Delfyett, D H Hartman, S Z Ahmad. Optical clock distribution using a mode-locked semiconductor laser diode system. J Lightwave Technol, 9, 1646(1991).

    [40] N Picqué, T W Hänsch. Frequency comb spectroscopy. Nat Photonics, 13, 146(2019).

    [41] J Mandon, G Guelachvili, N Picqué. Fourier transform spectroscopy with a laser frequency comb. Nat Photonics, 3, 99(2009).

    [42] A L Gaeta, M Lipson, T J Kippenberg. Photonic-chip-based frequency combs. Nat Photonics, 13, 158(2019).

    [43] D T Spencer, T Drake, T C Briles et al. An optical-frequency synthesizer using integrated photonics. Nature, 557, 81(2018).

    [44] Z Wang, K Van Gasse, V Moskalenko et al. A III–V-on-Si ultra-dense comb laser. Light: Sci Appl, 6, e16260(2017).

    [45] G Dong, W Deng, J Hou et al. Ultra-compact multi-channel all-optical switches with improved switching dynamic characteristics. Opt Express, 26, 25630(2018).

    [46] H Altug, D Englund, J Vučković. Ultrafast photonic crystal nanocavity laser. Nat Phys, 2, 484(2006).

    [47] K Nozaki, T Tanabe, A Shinya et al. Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nat Photonics, 4, 477(2010).

    [48] S Matsuo, A Shinya, T Kakitsuka et al. High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted. Nat Photonics, 4, 648(2010).

    [49] C Monat, C Seassal, X Letartre et al. InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 μm. Electron Lett, 37, 764(2001).

    [50] G Vecchi, F Raineri, I Sagnes et al. Photonic-crystal surface-emitting laser near 1.55 μm on gold-coated silicon wafer. Electron Lett, 43, 39(2007).

    [51] K Tanabe, M Nomura, D Guimard et al. Room temperature continuous wave operation of InAs/GaAs quantum dot photonic crystal nanocavity laser on silicon substrate. Opt Express, 17, 7036(2009).

    [52] T J Karle, Y Halioua, F Raineri et al. Heterogeneous integration and precise alignment of InP-based photonic crystal lasers to complementary metal-oxide semiconductor fabricated silicon-on-insulator wire waveguides. J Appl Phys, 107, 063103(2010).

    [53] K Takeda, T Sato, A Shinya et al. Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers. Nat Photonics, 7, 569(2013).

    [54] G Crosnier, D Sanchez, A Bazin et al. High Q factor InP photonic crystal nanobeam cavities on silicon wire waveguides. Opt Lett, 41, 579(2016).

    [55] K A Atlasov, M Felici, K F Karlsson et al. 1D photonic band formation and photon localization in finite-size photonic-crystal waveguides. Opt Express, 18, 117(2010).

    [56] M K Seo, K Y Jeong, J K Yang et al. Low threshold current single-cell hexapole mode photonic crystal laser. Appl Phys Lett, 90, 171122(2007).

    [57] G Crosnier, D Sanchez, S Bouchoule et al. Hybrid indium phosphide-on-silicon nanolaser diode. Nat Photon, 11, 297(2017).

    [58] T Spuesens, F Mandorlo, P Rojo-Romeo et al. Compact integration of optical sources and detectors on soi for optical interconnects fabricated in a 200 mm CMOS pilot line. J Lightwave Technol, 30, 1764(2012).

    [59] K Y Jeong, Y S No, Y Hwang et al. Electrically driven nanobeam laser. Nat Commun, 4, 2822(2013).

    [60] W Kobayashi, T Ito, T Yamanaka et al. 50-Gb/s direct modulation of a 1.3-μm InGaAlAs-based DFB laser with a ridge waveguide structure. IEEE J Sel Top Quantum Electron, 19, 1500908(2013).

    [61] H Kim, W J Lee, A C Farrell et al. Telecom-wavelength bottom-up nanobeam lasers on silicon-on-insulator. Nano Lett, 17, 5244(2017).

    [62]

    Xuhan Guo, An He, Yikai Su. Recent advances of heterogeneously integrated III–V laser on Si[J]. Journal of Semiconductors, 2019, 40(10): 101304
    Download Citation