• Photonics Research
  • Vol. 5, Issue 6, 629 (2017)
Tiecheng Wang1、2 and Xiangdong Zhang1、2、*
Author Affiliations
  • 1Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, 100081 Beijing, China
  • 2Kunming Institute of Physics, Kunming 650223, China
  • show less
    DOI: 10.1364/PRJ.5.000629 Cite this Article Set citation alerts
    Tiecheng Wang, Xiangdong Zhang. Improved third-order nonlinear effect in graphene based on bound states in the continuum[J]. Photonics Research, 2017, 5(6): 629 Copy Citation Text show less
    References

    [1] E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, S. A. Mikhailov. Coherent nonlinear optical response of graphene. Phys. Rev. Lett., 105, 097401(2010).

    [2] R. Wu, Y. Zhang, S. Yan, F. Bian, W. Wang, X. Bai, X. Lu, J. Zhao, E. Wang. Purely coherent nonlinear optical response in solution dispersions of graphene sheets. Nano Lett., 11, 5159-5164(2011).

    [3] H. Zhang, S. Virally, Q. Bao, L. K. Ping, S. Massar, N. Godbout, P. Kockaert. Z-scan measurement of the nonlinear refractive index of graphene. Opt. Lett., 37, 1856-1858(2012).

    [4] X. Yao, A. Belyanin. Giant optical nonlinearity of graphene in a strong magnetic field. Phys. Rev. Lett., 108, 255503(2012).

    [5] M. Tokman, X. Yao, A. Belyanin. Generation of entangled photons in graphene in a strong magnetic field. Phys. Rev. Lett., 110, 077404(2013).

    [6] Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, D. Y. Tang. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater., 19, 3077-3083(2009).

    [7] W. B. Cho, J. W. Kim, H. W. Lee, S. Bae, B. H. Hong, S. Y. Choi, I. H. Baek, K. Kim, D.-I. Yeom, F. Rotermund. High-quality, large-area monolayer graphene for efficient bulk laser mode-locking near 1:25  μm. Opt. Lett., 36, 4089-4091(2011).

    [8] D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, A. Ferrari. Sub 200  fs pulse generation from a graphene mode-locked fiber laser. Appl. Phys. Lett., 97, 203106(2010).

    [9] Y. W. Song, S. Y. Jang, W. S. Han, M. K. Bae. Graphene mode-lockers for fiber lasers functioned with evanescent field interaction. Appl. Phys. Lett., 96, 051122(2010).

    [10] W. Tan, C. Su, R. Knize, G. Xie, L. Li, D. Tang. Mode locking of ceramic Nd: yttrium aluminum garnet with graphene as a saturable absorber. Appl. Phys. Lett., 96, 031106(2010).

    [11] J.-L. Xu, X.-L. Li, Y.-Z. Wu, X.-P. Hao, J.-L. He, K.-J. Yang. Graphene saturable absorber mirror for ultra-fast-pulse solid-state laser. Opt. Lett., 36, 1948-1950(2011).

    [12] J. Wang, Y. Hernandez, M. Lotya, J. N. Coleman, W. J. Blau. Broadband nonlinear optical response of graphene dispersions. Adv. Mater., 21, 2430-2435(2009).

    [13] M. Feng, H. Zhan, Y. Chen. Nonlinear optical and optical limiting properties of graphene families. Appl. Phys. Lett., 96, 033107(2010).

    [14] H. Yang, X. Feng, Q. Wang, H. Huang, W. Chen, A. T. Wee, W. Ji. Giant two-photon absorption in bilayer graphene. Nano Lett., 11, 2622-2627(2011).

    [15] H. Harutyunyan, R. Beams, L. Novotny. Controllable optical negative refraction and phase conjugation in graphite thin films. Nat. Phys., 9, 423-425(2013).

    [16] S. M. Rao, A. Lyons, T. Roger, M. Clerici, N. I. Zheludev, D. Faccio. Geometries for the coherent control of four-wave mixing in graphene multilayers. Sci. Rep., 5, 15399(2015).

    [17] J. L. Cheng, N. Vermeulen, J. E. Sipe. Third order optical nonlinearity of graphene. New J. Phys., 16, 053014(2014).

    [18] S.-Y. Hong, J. I. Dadap, N. Petrone, P.-C. Yeh, J. Hone, R. M. Osgood. Optical third-harmonic generation in graphene. Phys. Rev. X, 3, 021014(2013).

    [19] N. Kumar, J. Kumar, C. Gerstenkorn, R. Wang, H.-Y. Chiu, A. L. Smirl, H. Zhao. Third harmonic generation in graphene and few-layer graphite films. Phys. Rev. B, 87, 121406(2013).

    [20] S. A. Mikhailov. Quantum theory of third-harmonic generation in graphene. Phys. Rev. B, 90, 241301(2014).

    [21] S. A. Mikhailov. Quantum theory of third-harmonic generation in graphene. Phys. Rev. B (erratum), 91, 039904(2014).

    [22] J. L. Cheng, N. Vermeulen, J. E. Sipe. Third-order nonlinearity of graphene: effects of phenomenological relaxation and finite temperature. Phys. Rev. B, 91, 235320(2016).

    [23] J. L. Cheng, N. Vermeulen, J. E. Sipe. Third-order nonlinearity of graphene: effects of phenomenological relaxation and finite temperature. Phys. Rev. B (erratum), 93, 039904(2016).

    [24] A. V. Gorbach, E. Ivanov. Perturbation theory for graphene-integrated waveguide: cubic nonlinearity and third-harmonic generation. Phys. Rev. A, 94, 013811(2016).

    [25] D. B. S. Soh, R. Hamerly, H. Mabuchi. Comprehensive analysis of the optical Kerr coefficient of graphene. Phys. Rev. A, 94, 023845(2016).

    [26] Y. F. Song, L. Li, H. Zhang, D. Y. Shen, D. Y. Tang, K. P. Loh. Vector multi-soliton operation and interaction in a graphene mode-locked fiber laser. Opt. Express, 21, 10010-10018(2013).

    [27] Z.-C. Luo, M. Liu, Z.-N. Guo, X.-F. Jiang, A.-P. Luo, C.-J. Zhao, X.-F. Yu, W.-C. Xu, H. Zhang. Microfiber-based few layer black phosphorus saturable absorber for ultra-fast fiber laser. Opt. Express, 23, 20030-20039(2015).

    [28] M. A. Vincenti, D. de Ceglia, M. Grande, A. D’Orazio, M. Scalora. Third-harmonic generation in one-dimensional photonic crystal with graphene-based defect. Phys. Rev. B, 89, 165139(2014).

    [29] J. Niu, M. Luo, Q. H. Liu. Enhancement of graphene’s third-harmonic generation with localized surface plasmon resonance under optical/electro-optic Kerr effects. J. Opt. Soc. Am. B, 33, 615-621(2016).

    [30] A. V. Gorbach. Nonlinear graphene plasmonics: amplitude equation for surface plasmons. Phys. Rev. A, 87, 013830(2013).

    [31] G. T. Adamashvili, D. J. Kaup. Optical surface breather in graphene. Phys. Rev. A, 95, 053801(2017).

    [32] D. C. Marinica, A. G. Borisov, S. V. Shabanov. Bound states in the continuum in photonics. Phys. Rev. Lett., 100, 183902(2008).

    [33] E. N. Bulgakov, A. F. Sadreev. Bound states in the continuum in photonic waveguides inspired by defects. Phys. Rev. B, 78, 075105(2008).

    [34] Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, M. Segev. Experimental observation of optical bound states in the continuum. Phys. Rev. Lett., 107, 183901(2011).

    [35] M. I. Molina, A. E. Miroshnichenko, Y. S. Kivshar. Surface bound states in the continuum. Phys. Rev. Lett., 108, 070401(2012).

    [36] J. Lee, B. Zhen, S. L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, O. Shapira. Observation and differentiation of unique high-Q optical resonances near zero wave vector in macroscopic photonic crystal slabs. Phys. Rev. Lett., 109, 067401(2012).

    [37] C. W. Hsu, B. Zhen, J. Lee, S. L. Chua, S. G. Johnson, J. D. Joannopoulos, M. Soljačić. Observation of trapped light within the radiation continuum. Nature, 499, 188-191(2013).

    [38] C. W. Hsu, B. Zhen, S. L. Chua, S. G. Johnson, J. D. Joannopoulos, M. Soljačić. Bloch surface eigenstates within the radiation continuum. Light Sci. Appl., 2, e84(2013).

    [39] F. Monticone, A. Alù. Embedded photonic eigenvalues in 3D nanostructures. Phys. Rev. Lett., 112, 213903(2014).

    [40] Y. Yang, C. Peng, Y. Liang, Z. Li, S. Noda. Analytical perspective for bound states in the continuum in photonic crystal slabs. Phys. Rev. Lett., 113, 037401(2014).

    [41] B. Zhen, C. W. Hsu, L. Lu, A. D. Stone, M. Soljačić. Topological nature of optical bound states in the continuum. Phys. Rev. Lett., 113, 257401(2014).

    [42] M. G. Silveirinha. Trapping light in open plasmonic nanostructures. Phys. Rev. A, 89, 023813(2014).

    [43] M. Zhang, X. D. Zhang. Ultrasensitive optical absorption in graphene based on bound states in the continuum. Sci. Rep., 5, 8266(2015).

    [44] E. N. Bulgakov, A. F. Sadreev. Light trapping above the light cone in a one-dimensional array of dielectric spheres. Phys. Rev. A, 92, 023816(2015).

    [45] E. N. Bulgakov, A. F. Sadreev. Transfer of spin angular momentum of an incident wave into orbital angular momentum of the bound states in the continuum in an array of dielectric spheres. Phys. Rev. A, 94, 033856(2016).

    [46] J. Li, J. Ren, X. D. Zhang. Three-dimensional vector wave bound states in a continuum. J. Opt. Soc. Am. B, 34, 559-565(2017).

    [47] V. P. Gusynin, S. G. Sharapov, J. P. Carbotte. Magneto-optical conductivity in graphene. J. Phys. Condens. Matter, 19, 026222(2007).

    [48] G. W. Hanson. Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys., 103, 064302(2008).

    [49] P. A. D. Gonçalves, E. J. C. Dias, Yu. V. Bludov, N. M. R. Peres. Modeling the excitation of graphene plasmons in periodic grids of graphene ribbons: an analytical approach. Phys. Rev. B, 94, 195421(2016).

    [50] K. Ziegler. Robust transport properties in graphene. Phys. Rev. Lett., 97, 266802(2006).

    [51] V. P. Gusynin, S. G. Sharapov, J. P. Carbotte. Sum rules for the optical and Hall conductivity in graphene. Phys. Rev. B, 75, 165407(2007).

    [52] T. Stauber, N. M. R. Peres, A. K. Geim. Optical conductivity of graphene in the visible region of the spectrum. Phys. Rev. B, 78, 085432(2008).

    [53] S. A. Mikhailov, K. Ziegler. New electromagnetic mode in graphene. Phys. Rev. Lett., 99, 016803(2007).

    [54] J. Horng, K. F. Mak, C. Chen, M. Y. Sfeir, B. Geng, Y. Wu, C. H. Lui, C. Girit, J. A. Misewich, Y. Zhang, T. F. Heinz, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, F. Wang. Drude conductivity of Dirac fermions in graphene. Phys. Rev. B, 83, 165113(2011).

         Measurement of the optical conductivity of graphene. Phys. Rev. Lett., 101, 196405(2008).

    [55] S. Thongrattanasiri, F. H. L. Koppens, F. J. García de Abajo. Complete optical absorption in periodically patterned graphene. Phys. Rev. Lett., 108, 047401(2012).

    [57] A. Marini, J. D. Cox, F. J. García de Abajo. Theory of graphene saturable absorption. Phys. Rev. B, 95, 125408(2017).

    [58] A. Auditore, C. De Angelis, A. Locatelli, S. Boscolo, M. Midrio, M. Romagnoli, A. D. Capobianco, G. Nalesso. Graphene sustained nonlinear modes in dielectric waveguides. Opt. Lett., 38, 631-633(2013).

    [59] A. Martinez, K. Fuse, S. Yamashita. Mechanical exfoliation of graphene for the passive mode-locking of fiber lasers. Appl. Phys. Lett., 99, 121107(2011).

    [60] N. Stefanou, V. Yannopapas, A. Modinos. Heterostructures of photonic crystals: frequency bands and transmission coefficients. Comput. Phys. Commun., 113, 49-77(1998).

    [61] H. Nasari, M. S. Abrishamian. Electrically tunable, plasmon resonance enhanced terahertz third harmonic generation via graphene. RSC Adv., 6, 50190-50200(2016).

    [62] H. Nasari, M. S. Abrishamian. Nonlinear terahertz frequency conversion via graphene microribbon array. Nanotechnology, 27, 305202(2016).

    [63] E. D. Palik, G. Ghosh. Handbook of Optical Constants of Solids(1998).

    [64] S. Adachi. GaAs, AlAs, and AlxGa1−xAs: material parameters for use in research and device applications. J. Appl. Phys., 58, R1-R29(1985).

    [65] A. Aryshev, A. Potylitsyn, G. Naumenko, M. Shevelev, K. Lekomtsev, L. Sukhikh, P. Karataev, Y. Honda, N. Terunuma, J. Urakawa. Monochromaticity of coherent Smith-Purcell radiation from finite size grating. Phys. Rev. Accel. Beams, 20, 024701(2017).

    CLP Journals

    [1] Tiecheng Wang, Zhixin Li, Xiangdong Zhang. Improved generation of correlated photon pairs from monolayer WS2 based on bound states in the continuum[J]. Photonics Research, 2019, 7(3): 341

    [2] Jiwen Zhu, Xuemei Cheng, Yali Liu, Ruiduo Wang, Man Jiang, Diao Li, Baole Lu, Zhaoyu Ren. Stimulated Brillouin scattering induced all-optical modulation in graphene microfiber[J]. Photonics Research, 2019, 7(1): 8

    Tiecheng Wang, Xiangdong Zhang. Improved third-order nonlinear effect in graphene based on bound states in the continuum[J]. Photonics Research, 2017, 5(6): 629
    Download Citation