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The scattering matrix theory has been developed to calculate the third-order nonlinear effect in sphere-graphene-
slab structures. By designing structural parameters, we have demonstrated that the incident electromagnetic wave
can be well confined in the graphene in these structures due to the formation of a bound state in the continuum
(BIC) of radiation modes. Based on such a bound state, third-harmonic (TH) generation and four-wave mixing
(FWM) have been studied. It is found that the efficiency of TH generation in monolayer graphene can be
enhanced about 7 orders of magnitude. It is interesting that we can design structure parameters to make all beams
(the pump beam, probe beam, and generated FWM signal) be BICs at the same time. In such a case, the efficiency
of FWM in monolayer graphene can be enhanced about 9 orders of magnitude. Both the TH and FWM signals are
sensitive to the wavelength, and possess high Q factors, which exhibit very good monochromaticity. By taking
suitable BICs, the selective generation of TH and FWM signals for S- and P-polarized waves can also be realized,
which is beneficial for the design of optical devices. © 2017 Chinese Laser Press

OCIS codes: (190.4410) Nonlinear optics, parametric processes; (190.2620) Harmonic generation and mixing.
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1. INTRODUCTION

In recent years, nonlinear optical properties of graphene have
attracted much attention because recent investigations have
shown that the third-order nonlinear optical response of the
single-atom-layer graphene is particularly strong [1–5]. Many
studies have focused on such an aspect, such as saturable absorp-
tion [6–11], optical limiting [12,13], two-photon absorption
[14], four-wave mixing (FWM) [1,15,16], and third-harmonic
(TH) generation [17–24]. This allows one to employ gra-
phene in active photonic devices with improved functionality
[3,18,19]. In these applications, the strength of interaction
between graphene and electromagnetic (EM) waves plays a cen-
tral role. In general, such an interaction is weak due to the single
atom thickness of graphene. The weak interactions block effi-
cient generation of nonlinear effects and potential applications
of graphene in optoelectronic devices. Thus, various methods to
improve the interaction between graphene and EM waves have
been proposed [5–13,25–27]. For example, TH generation may
be dramatically enhanced in monolayer graphene by inserting it
in properly designed 1D photonic crystals (PCs) [28] or using
ultrastrong localized surface plasmon resonances [29–31].

On the other hand, analogous to the localized electrons with
energy larger than their potential barriers, light bound states in

the continuum (BIC) have been observed experimentally in
recent years [32–34]. The BICs are known as embedded
trapped modes, which correspond to discrete eigenvalues
coexisting with extended modes of a continuous spectrum
[35–37]. For example, the BICs for the EM wave have been
shown to exist in the dielectric gratings [35], waveguide struc-
tures [32,36,38–40], the surface of the object [37,41], PC slabs
[33,34,42,43], and some open subwavelength nanostructures
[44–46]. Photonic nanostructures with such BICs possess many
advantages. First, they may be more easily implemented com-
pared with the electron system. In the electronic quantum sys-
tem, some artificially designed potentials cannot be readily
realized. Second, they may have a variety of potential applica-
tions, such as biosensing, perfect filters, and so on.

Motivated by these investigations, in this work we explore
the possibility to improve the efficiency of the third-order non-
linear effect in graphene using BICs. Two kinds of third-order
nonlinear effect, TH generation and FWM, are considered.
The method to calculate these nonlinear effects in sphere-
graphene-slab structures and multilayer structures has been de-
veloped. We find that the efficiency of the TH generation and
FWM can be dramatically enhanced in monolayer graphene
based on BICs. The generated signals possess very good
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monochromaticity. The physical origin for such a phenomenon
has also been analyzed. The rest of this paper is organized as
follows: We will describe the theory and method in Section 2,
present the results and discussions in Section 3, and give a
summary in Section 4.

2. THEORY AND METHOD

We consider a three-layer structure consisting of monolayer di-
electric spheres with a square lattice, a monolayer graphene, and
a dielectric slab, as shown in Figs. 1(a) and 1(b); the monolayer
graphene is placed at the interface between the monolayer di-
electric spheres and the dielectric slab. The distance between
two neighbor spheres is taken as a, the radius, relative permit-
tivity, and relative permeability of spheres are denoted by rs, εs,
and μs, respectively; the spheres are immersed in the air. The
thickness, relative permittivity, and relative permeability of the
dielectric slab are represented by d, εd , and μd , respectively. All
these materials are taken to be nonmagnetic μs � μd � 0. The
thickness, conductivity, and third-order susceptibility of the
monolayer graphene are marked by d g, σ, and χ�3�; the non-
linear surface current due to the third-order nonlinear effects of
the monolayer graphene at the graphene location is ~J �3��3ω� �
−id g3ω ~P�3��3ω�, where 3ω and ~P�3��3ω� represent the angular
frequency of the TH EM wave and the third-order polarization
density.

The surface conductivity of the graphene σ is governed by
the Kubo formula [47–54]; we take the conductivity as follows:

σ � σintra � σinter; (1)

σintra � j
e2kBT

πℏ2�ω� jγ�

�
EF

kBT
� 2 In�e−EF∕kBT � 1�

�
; (2)

σinter � j
e2�ω� jγ�

πℏ2

Z
∞

0

dε
f d �−ε� − f d �ε�

�ω� jγ�2 − 4�ε∕ℏ�2 : (3)

The surface conductivity σ contains the intraband contribu-
tion σintra and the interband contribution σinter; here, e, ℏ, kB ,
and T are the electronic charge, Planck constant, Boltzmann
constant, and temperature, respectively; f d �ε�, EF , and γ
represent the Fermi distribution, Fermi energy, and relaxation
rate. We take the temperature and relaxation rate as T �
300 K and γ � 1.3 meV [55] in the following calculation.
In the THz regime, when EF ≫ kBT and 2EF > ℏω, the con-
ductivity of graphene can be well approximated by the Drude-
like expression σ � σ0

π
4EF

ℏγ−jℏω [56], where σ0 � e2∕�4ℏ� is the
well-known universal conductivity. Thus, the conductivity σ
can be tuned by changing the Fermi level via chemical doping
or applying a gate voltage.

Based on the recent theoretical and experimental studies, the
only nonzero components of the third-order susceptibility ten-
sor are χ�3�xxx , χ

�3�
yyy , and χ�3�zzz due to the isotropic nature. We as-

sume χ�3�xxx � χ�3�yyy � χ�3� and neglect χ�3�zzz for χ
�3�
zzz ≪ χ�3�xxx [19]

and take the susceptibility as χ�3� � 1.4 × 10−16 m2∕V2

[20,21] compatible with the recent study. When the irradiance
on graphene is increased, the saturation effect [57] will be en-
hanced; the third-order susceptibility is modified and taken as
χ�3�S, where S � 1

1��jEx j2�jEy j2�∕jE satj2 is the saturation coeffi-

cient [58,59], Ex and Ey are the electric field on graphene. The
saturation field E sat is taken from the experimental data [58].
In the following, we will provide the calculation method for
TH generation and FWM in such a structure.

A. Theory for the TH Generation in the
Sphere-Graphene-Slab Structure

When a plane wave ~Ei�~r;ω� with angular frequency ω is inci-
dent on the structure at the incident angle θi, as shown in
Fig. 1(a), the transmitted and reflected TH fields are generated
due to the third-order nonlinear effect of graphene. The funda-
mental frequency (FF) field [ ~Ex�~r;ω�, ~Ey�~r;ω�, and ~Ez�~r;ω�]
can be calculated by the layer-multiple-scattering method, of
which details of the calculation process are described in
Ref. [60]. Thus, the third-order polarization densities of graphene
are expressed as P�3�

x �3ω� � χ�3��Ex�~r;ω�jz�0�3, P�3�
y �3ω� �

χ�3��Ey�~r;ω�jz�0�3, and P�3�
z �3ω� � 0; here, Ex�~r;ω�jz�0 and

Ey�~r;ω�jz�0 represent x and y components of the FF electric
field on the graphene, which is located at the interface z � 0;
the corresponding surface currents are expressed as J �3�x �3ω� �
−3id gωP

�3�
x �3ω� and J�3�y �3ω� � −3id gωP

�3�
y �3ω�.

In the following, we present the calculated method for the
TH generation in such a structure. Because the sphere layer and
dielectric slab are considered as the linear materials, at the TH
frequency we only consider the scattering matrix of graphene.
We first consider that a monolayer graphene laid at the inter-
face z � 0, as shown in inset of Fig. 1(a), is radiated by a plane
wave at the FF from the x-z plane; the up/down medium of
the graphene is denoted by 1/2. The TH electric and mag-
netic fields at the up/down medium of the graphene are
marked by ~E1�~r; 3ω�∕ ~E2�~r; 3ω� and ~H 1�~r; 3ω�∕ ~H 2�~r; 3ω�

Fig. 1. (a) Diagram of the sphere-graphene-slab structure and the
TH generation process. The spheres are arranged in a square lattice
with lattice constant a; the thickness of the dielectric slab is d , and
the monolayer graphene is put at the interface between the monolayer
dielectric spheres and the dielectric slab. When a plane wave with an-
gular frequency ω is incident on the structure at the incident angle θi ,
the transmitted and reflected TH fields are generated due to the third-
order nonlinear effect of graphene. Inset shows graphene layer with up
medium denoted by 1 and down medium marked by 2. (b) Schematic
of the degenerate FWM process in the three-layer structure. The pump
beam at frequencyω1 and the probe beam at frequencyω2 are incident
on the structure with arbitrary incident angles θ1 and θ2. Because of
the third nonlinear effect of the graphene, the transmitted and re-
flected beams at FWM frequency ω3 � 2ω1 − ω2 are generated with
angle θ3. The angle θ3 is determined by the in-plane phase-matching
condition.
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with x and z components of the wave vector marked by qx and
q1z (qx and q2z), the x components of the wave vector qx in the
up and down media are equal. At the boundary, we have

~n × � ~E2�~r; 3ω� − ~E1�~r; 3ω��jz�0 � 0; (4a)

~n × � ~H 2�~r; 3ω� − ~H 1�~r; 3ω��jz�0

� σ ~E1�~r; 3ω�jz�0 � ~J�3��3ω�; (4b)

where ~n represents the direction of the normal unit vector at the
interface. The electric fields at the TH frequency in the up and
down media can be expressed as

~E1�~r; 3ω� � ~Ei
1�3ω�ei�qxx�q1z z−3ωt� � ~Er

1�3ω�ei�qxx−q1z z−3ωt�;
(5a)

~E2�~r; 3ω� � ~Et
2�3ω�ei�qxx�q2z z−3ωt�: (5b)

Here ~Ei
1�3ω�, ~Er

1�3ω�, and ~Et
2�3ω� represent the expanded

coefficients of the electric TH fields. Inserting Eq. (5) into the
boundary condition Eq. (4), we obtain the relations between
the electric fields up and down the graphene:

Et
2x�3ω� � T �1;2�

x Ei
1x�3ω� � CT �1;2�

x ; (6a)

Et
2y�3ω� � T �1;2�

y E i
1y�3ω� � CT �1;2�

y ; (6b)

Er
1x�3ω� � R�1;2�

x Ei
1x�3ω� � CR�1;2�

x ; (6c)

Er
1y�3ω� � R�1;2�

y E i
1y�3ω� � CR�1;2�

y ; (6d)

where T �1;2�
x and T �1;2�

y represent the transmission coefficients,
and T �1;2�

y and R�1;2�
y are reflection coefficients, which are

given by

T �1;2�
x � 2q2z∕ε2

q1z∕ε1 � q2z∕ε2 � q1zq2zσ∕�ωε0ε1ε2�
; (7a)

T �1;2�
y � 2q1z

q1z � q2z � ωμ0σ
; (7b)

R�1;2�
x � q2z∕ε2 − q1z∕ε1 − q1zq2zσ∕�ωε0ε1ε2�

q1z∕ε1 � q2z∕ε2 � q1zq2zσ∕�ωε0ε1ε2�
; (7c)

R�1;2�
y � q1z − q2z − ωμ0σ

q1z � q2z � ωμ0σ
: (7d)

Here CT �1;2�
x , CT �1;2�

y , CR�1;2�
x , and CR�1;2�

y are the nonlin-
ear terms originating from the third-order nonlinear effect of
graphene and are expressed as

CT �1;2�
x � −J �3�x �3ω�q1zq2zσ∕�ωε0ε1ε2�

q1z∕ε1 � q2z∕ε2 � q1zq2zσ∕�ωε0ε1ε2�
; (8a)

CT �1;2�
y � −J �3�y �3ω�ωμ0

q1z � q2z � ωμ0σ
; (8b)

CR�1;2�
x � −J �3�x �3ω�q1zq2zσ∕�ωε0ε1ε2�

q1z∕ε1 � q2z∕ε2 � q1zq2zσ∕�ωε0ε1ε2�
� CT �1;2�

x ;

(8c)

CR�1;2�
y � −J �3�y �3ω�ωμ0

q1z � q2z � ωμ0σ
� CT �1;2�

y ; (8d)

where ε0 and μ0 are the permittivity and permeability of the
vacuum, respectively. In the following, we extend the layer-
multiple-scattering method to include a nonlinear graphene
layer. The electric fields outside the graphene layer are expressed
as ~E�

in�~r; 3ω�, ~E�
tr �~r; 3ω�, and ~E−

rf �~r; 3ω�, which represent the
incident wave along the �z direction (propagating downward)
and the corresponding transmitted wave along �z direction
and reflected waves along −z direction (propagating upward).
The corresponding waves with opposite directions are marked
by ~E−

in�~r; 3ω�, ~E−
tr�~r; 3ω�, and ~E�

rf �~r; 3ω�, respectively. These
waves can be expanded as a set of plane waves:

~E�
in�tr;rf ��~r;3ω� �

X2
l�1

X
mn

E�
in�tr;rf �;l ;mn�3ω�ei�kmnxx�kmnyy�kmnz z�ûl ;

(9)

where l � 1; 2 represent the x, y coordinates; �kmnx ; kmny� �
�kx; ky� � �gmnx; gmny� is the Bragg wave vector and kmnz �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 − k2mnx − k2mny
q

. Here, q is the wave vector, and �kx; ky� is
the reduced wave vector, which lies in the surface Brillouin

zone; �gmnx; gmny� � m~b1 � n~b2 is the general reciprocal vec-

tor, and ~b1 and ~b2 represent the reciprocal lattice vector.
Outside the graphene, the relationships between the incident
and the transmitted (reflected) waves are

Es
tr;l �3ω� �

X2
l 0�1

N ss
l l 0E

s
in;l 0 �3ω� � Dss

l ; (10a)

E−s
rf ;l �3ω� �

X2
l 0�1

N −ss
l l 0E

s
in;l 0 �3ω� � D−ss

l ; (10b)

where s � ��−� denotes a wave propagating downward
(upward); the matrixes N ss 0 and Dss 0 are given by

N ss 0
l l 0 �

�
N ss 0

x cos2ϕ�N ss 0
y sin2ϕ �N ss 0

x −N ss 0
y � sin ϕ cos ϕ

�N ss 0
x −N ss 0

y � sin ϕ cos ϕ N ss 0
x sin

2 ϕ�N ss 0
y cos2ϕ

�
;

(11a)

Dss 0
l �

�
cos ϕDss 0

x − sin ϕDss 0
y

sin ϕDss 0
x � cos ϕDss 0

y

�
; (11b)

where ϕ is the azimuthal angle of qk with respect to the x axis

and qk is the parallel component of q. Here N��
l � T �1;2�

l ,

N�−
l � R�2;1�

l , N −�
l � R�1;2�

l , and N −−
l � T �2;1�

l represent the
elements in matrixes N ss 0 ; D��

l � CT �1;2�
l , D�−

l � CR�2;1�
l ,

D−�
l � CR�1;2�

l , and D−−
l � CT �2;1�

l are the elements in ma-
trixesDss 0

l . We can further calculate scattering matrixesQη
2�η �

I; II; III; IV� and C κ
2�κ � I; II� for the monolayer graphene, the

subscript number 2 in these matrixes denotes the graphene
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layer (because it is the second layer in the structure). Similarly,
we can also obtain Qη

1 and C κ
1 (the scattering matrixes of the

spheres layer), Qη
3 and C κ

3 (the scattering matrixes of the
dielectric layer). The incident fields from two sides of
graphene can be expanded in plane waves ~E�

1 �~r; 3ω� �P
2
l�1

P
mn E

�
1;l ;mn�3ω�ei�kmnxx�kmnyy�kmnz z�ûl and ~E−

2�~r; 3ω� �P
2
l�1

P
mn E−

2;l ;mn�3ω�ei�kmnxx�kmnyy−kmnz z�ûl , the output fields
~E�
2 �~r; 3ω� and ~E−

1�~r; 3ω� from two sides of graphene can be
expanded in a similar way; here ~E�

1 �~r; 3ω� � ~E�
in�~r; 3ω�,

~E−
2�~r;3ω�� ~E−

in�~r;3ω�, ~E�
2 �~r;3ω�� ~E�

tr �~r;3ω�� ~E−
rf �~r;3ω�,

and ~E−
1�~r; 3ω� � ~E�

rf �~r; 3ω� � ~E−
tr�~r; 3ω�. Then the electrical

fields outside the graphene can be expressed as�
E�
2 �3ω�

E−
1�3ω�

�
�
�

Q I
2 Q II

2

Q III
2 Q IV

2

��
E�
1 �3ω�

E−
2�3ω�

�
�
�
C I

2

C II
2

�
;

(12)

where the electrical fields up and down the graphene
are written in the matrix forms E�

1 �3ω� �
� 	 	 	 E�

1;x;mn�3ω� E�
1;y;mn�3ω� 	 	 	 �T and E�

2 �3ω� �
� 	 	 	 E�

2;x;mn�3ω� E�
2;y;mn�3ω� 	 	 	 �T ; here, the superscript

T represents matrix transposition. In a similar way, the
electric fields up the sphere layer and down the
dielectric layer can also be expanded in plane waves
~E�
0 �~r; 3ω� �

P
2
l�1

P
mn E�

0;l ;mn�3ω�ei�kmnxx�kmnyy�kmnz z�ûl and
~E�
3 �~r; 3ω� �

P
2
l�1

P
mn E

�
3;l ;mn�3ω�ei�kmnxx�kmnyy�kmnz z�ûl ; we

also define the corresponding matrixes E�
0 �3ω� �

� 	 	 	 E�
0;x;mn�3ω� E�

0;y;mn�3ω� 	 	 	 �T and E�
3 �3ω� �

� 	 	 	 E�
3;x;mn�3ω� E�

3;y;mn�3ω� 	 	 	 �T .
In the following, we attempt to calculate the scattering ma-

trixes of the three-layer structure, which are marked by Qη
1;2;3

and C κ
1;2;3 based on the scattering matrixes of every layer. First,

we calculate the scattering matrixes of the first two successive
layers (the spheres layer and graphene layer), which are denoted
by Qη

1;2 and C κ
1;2. The matrixes Qη

1;2 and C κ
1;2 can be obtained

by combining the matrixes Qη
1 and C κ

1 of the sphere layer and
the matrixes Qη

2 and C κ
2 of the graphene layer:

Q I
1;2 � Q I

2�1 − Q II
1Q

III
2 �−1Q I

1; (13a)

Q II
1;2 � Q II

2 � Q I
2Q

II
1 �1 − Q III

2 Q II
1 �−1Q IV

2 ; (13b)

Q III
1;2 � Q III

1 � Q IV
1 Q III

2 �1 − Q II
1Q

III
2 �−1Q I

1; (13c)

Q IV
1;2 � Q IV

1 �1 − Q III
2 Q II

1 �−1Q IV
2 ; (13d)

C I
1;2 � Q I

2�1 − Q II
1Q

III
2 �−1�Q II

1C
II
2 � C I

1� � C I
2; (14a)

C II
1;2 � Q IV

n �1 − Q III
2 Q II

1 �−1�Q III
2 C I

1 � C II
2 � � C II

1 ; (14b)

where the matrixes Qη
1;2 in Eq. (13) are consistent with those in

Ref. [60]; C κ
1;2 are the corresponding nonlinear terms, which

are provided for the first time. Then, in a similar way with that
given above, we can obtain the scattering matrixes Qη

1;2;3 and
C κ

1;2;3 of the three successive layers based on the scattering
matrixes Qη

1;2 and C κ
1;2 of the first two successive layers and

the scattering matrixes Qη
3 and C κ

3 of the dielectric layer. Thus,
we can obtain the TH fields upside �E�

3 �3ω�� and downside
�E−

0�3ω�� the three-layer structure from the following relation:�
E�
3 �3ω�

E−
0�3ω�

�
�
 
Q I

1;2;3 Q II
1;2;3

Q III
1;2;3 Q IV

1;2;3

! 
E�
0 �3ω�

E−
3�3ω�

!
�
 
C I

1;2;3

C II
1;2;3

!

�
 
Q I

1;2;3 Q II
1;2;3

Q III
1;2;3 Q IV

1;2;3

!�
0

0

�
�
 
C I

1;2;3

C II
1;2;3

!
: (15)

Based on the calculated TH fields in Eq. (15), the electric
field intensities of the transmitted �I t�3ω�� and reflected
�I r�3ω�� TH fields radiated from the three-layer structure
can be calculated by

I t�3ω� �
1

2
ε0
X
l ;mn

�E�
3;l ;mn�3ω���E�

3;l ;mn�3ω��
; (16a)

I r�3ω� �
1

2
ε0
X
l ;mn

�E−
0;l ;mn�3ω���E−

0;l ;mn�3ω��
: (16b)

The electric field intensity of the incident FF field I i�ω� can
also be calculated based on the known incident FF electric field
~E�
i �~r;ω� �

P
2
l�1

P
mn E

�
i;l ;mn�ω�ei�k

i
mnxx�kimnyy�kimnz z�ûl ; it is

I i�ω� �
1

2
ε0
X
l ;mn

�E�
i;l ;mn�ω���E�

i;l ;mn�ω��
: (16c)

In the calculating the sums of Eq. (16) waves with imaginary
z component of wave vector (decaying waves) are dropped, as
they do not transfer energy along the z direction.

Then, the conversion efficiencies for the transmitted (F1),
reflected (F2), and total (F3) TH fields can be obtained:

F1 � I t�3ω�
I i�ω�

; F2 � I r�3ω�
I i�ω�

; F3 � I t�3ω� � I r�3ω�
I i�ω�

:

(17)

In order to compare the TH fields generated in the three-
layer structure with those in the freestanding graphene, the
enhancements of the transmitted (G1), reflected (G2), and
total (G3) TH field are introduced as

G1 � I t�3ω�
I 0t�3ω�

; G2 � I r�3ω�
I0r�3ω�

;

G3 � I t�3ω� � I r�3ω�
I 0t�3ω� � I 0r�3ω�

; (18)

where I 0t�3ω� and I0r�3ω� represent the electric field inten-
sities of the transmitted and reflected TH fields generated in
the freestanding graphene. Based on the above relations, we
can obtain the conversion efficiencies and the enhancements
for TH fields using numerical calculations.

B. Theory for the FWM in the Sphere-Graphene-Slab
Structure
Now we turn to the FWM of the three-layer structure shown in
Fig. 1(b). This structure is illuminated by a pump beam
~E�
1 �~r;ω1� at frequency ω1 and incident angle θ1; it is also radi-

ated by a probe beam ~E�
2 �~r;ω2� at frequency ω2 and incident

angle θ2. Due to the third-order effect of the graphene, the
transmitted beam ~E�

3 �~r;ω3� and reflected beam ~E−
3�~r;ω3� at
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the FWM frequency ω3 � 2ω1 − ω2 are generated; here, the
subscripts 1, 2, and 3 represent the three waves. The fields for
them are expressed as
~E1�2;3��~r;ω1�2;3��
� ~E�

1�2;3��~r;ω1�2;3��� ~E−
1�2;3��~r;ω1�2;3��

�
X
mn

~E1�2;3�mn�z�ei�k1�2;3�mnxx�k1�2;3�mnyy−ω1�2;3�t�

�
X
mn

� ~E�
1�2;3�mn�z�� ~E−

1�2;3�mn�z��ei�k1�2;3�mnxx�k1�2;3�mnyy−ω1�2;3�t�;

(19)
where the symbols ��−� shown in Eq. (19) represent the
positive (negative) real parts of the z components of the wave
vector. If three frequencies are not equal, the nonlinear polari-
zation along the x direction on the graphene can be expressed as
Px�ω3� � ε0χ

�3�E1x�~r;ω1�E

2x�~r;ω2�E1x�~r;ω1�jz�0

� ε0χ
�3�
X
otmnrs

E1otx�z�E

2mnx�z�E1rsx�z�jz�0

× ei�k3x x�Go−m�rx x�k3y y�Gt−n�sy y−ω3t�: (20)
In the same way, the nonlinear polarization along the y di-

rection, Py�ω3�, can also be obtained. The directions of the
transmitted and reflected FWM waves are determined by the
in-plane phase-matching condition: k3x�y� � 2k1x�y� − k2x�y�.
For example, we consider a particular case that all the frequen-
cies (the pump, probe, and FWM waves) are equal, that is,
ω1 � ω2 � ω3 � ω0. In such a case, if the pump wave is in-
cident normally (θ1 � 0°), the angles of the probe and FWM
waves are equal (θ2 � θ3 � θ) due to the phase-matching con-
dition, the transmitted and reflected FWM fields are optical
phase conjugations. By considering the terms that have the
same transverse momentum, we divide the third-order nonlin-
ear polarization densities on the graphene along the x direction
into three parts, i.e., P1x�ω0�, P2x�ω0�, and P3x�ω0�:
P1x�ω0� � ε0χ

�3��3E1xE

1xE1x � 6E2xE


2xE1x

� 6E3xE

3xE1x � 6E2xE


1xE3x�
� ε0χ

�3�
X
otmnrs

P1x;otmnrsei�Go−m�nxx�Gt−n�sy y−ω0t�; (21a)

P2x�ω0�
� ε0χ

�3��3E2xE

2xE2x � 6E3xE


3xE2x

� 6E1xE

1xE2x � 3E1xE


3xE1x�
� ε0χ

�3�
X
otmnrs

P2x;otmnrsei��k2x�Go−m�rt−n�s;x�x��k2y�Go−m�rt−n�s;y�y−ω0t �;

(21b)

P3x�ω0�
� ε0χ

�3��3E3xE

3xE3x �6E1xE


1xE3x

�6E2xE

2xE3x �3E1xE


2xE1x�
� ε0χ

�3�
X
otmnrs

P3x;otmnrsei��−k2x�Go−m�rt−n�sx�x��−k2y�Go−m�rt−n�sy�y−ω0t �;

(21c)

with

P1x;otmnrs � 3E1otxE

1mnxE1rsx � 6E2otxE


2mnxE1rsx

� 6E3otxE

3mnxE1rsx � 6E2otxE


1mnxE3rsx ; (22a)

P2x;otmnrs � 6E1otxE

1mnxE2rsx � 3E2otxE


2mnxE2rsx

� 6E3otxE

3mnxE2rsx � 3E1otxE


3mnxE1rsx ; (22b)

P3x;otmnrs � 3E1otxE

2mnxE1rsx � 6E1otxE


1mnxE3rsx

� 6E2otxE

2mnxE3rsx � 3E3otxE


3mnxE3rsx : (22c)

The corresponding P1y�ω0�, P2y�ω0�, and P3y�ω0� can
be obtained in the same way; all the electrical fields here are
taken on the graphene. The first terms in Eq. (21) represent
a phenomenon called self-phase modulation [61,62], which
results from dipole excitations induced by three photons, the
second and third terms correspond to cross-phase modula-
tion, the fourth terms lead to the generation of the optical
phase conjugations. After the third-order nonlinear polariza-
tion densities are calculated, the surface currents of the gra-
phene, J �3�x �ω3� and J�3�y �ω3�, can be obtained. Similar to
the method for the TH generation shown in previous part, the
scattering matrixes in the present case can also be obtained; the
field intensities for the transmitted (I 3t ) and reflected (I 3r )
FWM waves can be obtained through numerical calculations.
Furthermore, we can calculate the transmission and reflection
coefficients, T and R, to characterize the efficiencies of FWM
generations:

T � I 3t∕I 2; T � I3r∕I 2: (23)

Here, I 2 represent the intensities of the incident
probe beams.

3. RESULTS AND DISCUSSIONS

In this section, we present numerical results for the TH gener-
ation and FWM from the three-layer structures. The dielectric
constants of spheres are taken as 6.25, which correspond to
thallium iodide [63]. The lattice constant is taken as a �
600 nm. We take Al0.14Ga0.86As [64] as the dielectric slab,
the corresponding dielectric constant is taken as εd �ω��
�6.3�19.0x��f �χ�� 1

2� E0

E0�Δ0
�32f �χs0���9.4−10.2x [64]; here

χ � ℏω∕E0, χ s0 � ℏω∕�E0 � Δ0�, E0 � 1.425� 1.155x �
0.37x2�eV�, E0 � Δ0 � 1.765� 1.115x � 0.37x2�eV�, and
x � 0.14. The radius of the sphere and the thickness of the
dielectric slab are designed as rs � 0.48a and d � 0.76a, re-
spectively. The third-order nonlinear effects of the spheres
and dielectric slab are neglected.

An important feature is that the BICs around the graphene
layer are easy to appear in these three-layer structures, which
has been discussed in the previous investigation [43]. In
Fig. 2(a), we plot the electric field intensities at the interface
(graphene layer) between the sphere and the slab for Ef �
0.23 eV and Ef � 0.7 eV. Here the P-polarized incident wave
with the intensity 1 MW∕cm2 is radiated to the XY plane
of the sample with θ � 5°, P- or S-polarized wave represents
the TM or TE mode. The field localizations are observed at
different wavelengths due to the formation of bound states.
These BICs lead to the appearance of the resonant absorption.
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Figure 2(b) displays the corresponding results of the absorption
as a function of wavelength. It can be seen clearly that the res-
onant absorption reaches 67% at λ � 1824.91 nm when the
Fermi energy is taken as 0.23 eV, while the absorption peak
is only 2.7% at λ � 1824.51 nm when the Fermi energy is
0.7 eV. This is because the imaginary part of the conductivity
of graphene is small (near zero) at Ef � 0.7 eV, which can be
seen from the inset of Fig. 2(a). From the inset in Fig. 2(a), we
can also see that Ef � 0.23 eV and Ef � 0.7 eV correspond
to two variation characteristics of the graphene conductivity.
In the following, we study the generation signals for the TH
and FWM waves based on these BICs.

A. Numerical Results for the TH Generation Based
on BICs
In Fig. 3(a), we plot the TH conversion efficiency from the
structure shown in Fig. 1(a) as a function of the FF wavelength
λ at Ef � 0.23 eV. The corresponding results at Ef � 0.7 eV

are shown in Fig. 3(b). Here the intensity and incident angle of
the pump P-polarized beam are taken as 1 MW∕cm2 and 5°,
which corresponds to the case in Fig. 2. For comparison, the
TH conversion efficiencies of the monolayer graphene in
vacuum are also plotted in Figs. 3(a) and 3(b). Because of
the mirror symmetry of the freestanding monolayer graphene,
the corresponding conversion efficiencies of F1 and F2 are
nearly equal, so the black and red dashed lines coincide with
each other.

The total TH conversion efficiency F3 reaches 6.1 × 10−7 at
the wavelength 1824.91 nm for Ef � 0.23 eV and 4.7 × 10−5

at the wavelength 1824.51 nm for Ef � 0.7 eV due to the
improved field localizations from BICs. The corresponding
TH signals are enhanced about 5 and 7 orders of magnitude
at two cases, respectively, as compared with the bare monolayer
graphene. The efficiency of the forward optical phase conjugate
wave and backward optical phase conjugate wave is nearly equal
[16]. The calculations in Ref. [28] have shown that the TH
generation can be enhanced 5 orders of magnitude using the
defect in 1D PC. However, for such a way, the sample with
dozens of layers has to be fabricated. Instead, only three layers
are needed in our structure.

In addition to the high efficiency, the signals generated in
this way have good monochromaticity due to high Q factors of
bound states. The monochromaticity can be described by the
relative linewidth Δλ∕λΓ in the signal spectrum; here λΓ is the
center wavelength of the peak and Δλ represents full width at
half maximum (FWHM) of the peak. From Figs. 3(a) and 3(b),
we obtain that Δλ∕λΓ are 0.0356% and 0.0175% for the
cases with Ef � 0.23 eV and Ef � 0.7 eV, respectively,
which is much less than the relative linewidth (about 1% in
Ref. [65]). This means that the TH conversion efficiency is
low when the frequency is taken at the deviation of the BICs.
For example, at 1822 nm the TH conversion in the three-layer
structure is nearly as large as that in the freestanding graphene;
at the 1815 nm, the TH conversion in the three-layer structure
is 2 orders of magnitude smaller than that in the freestanding
graphene.

Figures 3(c) and 3(d) display the calculated results of the
TH enhancement G3 as a function of the FF wavelength λ
for different radius rs of the spheres and various thickness d
of the slab. The other parameters are identical with those in
Fig. 3(a). It is clearly seen from Fig. 3(c) that the peak of G3
is slightly redshifted with the increase of the radius of the
spheres. In Fig. 3(d) the peak of G3 is redshifted obviously with
the increase of the thickness d of the slab. We can utilize this
property to tune the peak location of the TH signal by chang-
ing the thickness d of the slab.

The above discussions are only for a fixed incident angle of
the incident wave. In fact, the phenomena strongly depend on
the incident angle of the wave. Figure 4 shows the calculated
results for the TH enhancement as functions of the FF wave-
length and the incident angle at Ef � 0.23 eV. Here, the in-
tensity of the pump beam is taken as 1 MW∕cm2. Figures 4(a)
and 4(b) correspond to the transmitted enhancement for the
S- and P-polarized pump beams, respectively; the correspond-
ing results for the reflected enhancement are given in
Figs. 4(c) and 4(d). It is seen clearly that both G1 and G2

Fig. 2. (a) The absorption as a function of the wavelength λ when
the Fermi energy is taken as Ef � 0.23 eV (black line) and Ef �
0.7 eV (red line). Inset shows the conductivity of the graphene.
(b) The electric field distribution at the graphene location below
the bottom of the spheres when the Fermi energy is taken as Ef �
0.23 eV (black line) and Ef � 0.7 eV (red line).

Fig. 3. Transmitted (F1), reflected (F2), and total (F3) TH con-
versions in the three-layer structure and freestanding graphene as a
function of the FF wavelength λ when the Fermi energy is taken as
(a) Ef � 0.23 eV and (b) Ef � 0.7 eV. The TH enhancement G3
of TH signal in the three-layer structure compared with that in the
freestanding graphene as a function of the FF wavelength λ for (c) dif-
ferent radius rs of the spheres or (d) various thickness d of the slab,
the Fermi energy in (c) and (d) is taken as Ef � 0.23 eV.
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are sensitive to the incident angle. There are common TH
enhancement peaks around the wavelength 1825.57 nm for
S- and P-polarized pump beams located at the normal incident
angle.

With the increase of the incident angle from 0° to 30°, the
peaks split into three for the S-polarized pump beam (S1, S2,
and S3) and do not split for the P-polarized pump beam (P1).
At the same time, we find that S2 and P1 overlap each other,
which are blueshifted with the increase of the incident angle.
These phenomena originated from the formation of BICs. This
can be seen clearly in Figs. 4(e) and 4(f ), which display the
corresponding absorptions as functions of the wavelength and
the incident angle of the incident wave for S- and P-polarized
waves, respectively. The angle-dependent resonant absorptions
are clearly visible in Figs. 4(e) and 4(f ) corresponding to the
existence of trapped EM modes (BICs) in the structure. The
change characters of angle-dependent BICs are analogous to
those of TH generations, as shown in Figs. 4(a)–4(d). This
means that the formation of BICs leads to angle dependences
of TH generations.

B. Numerical Results for the FWM Based on BICs
For the FWM from the structure shown in Fig. 1(b), we con-
sider two kinds of cases: Case I and Case II. For Case I, the
waves keep the same frequency in the process, as shown in
Fig. 5(a), while the waves are in different frequencies for
Case II. For Case I, the FWM from bare graphene has been

discussed in Ref. [15]. In Fig. 5, we present the comparison
between our results with those from the bare graphene; here,
the wavelengths are denoted by λ.

Figures 5(b) and 5(c) show the transmission (T ) and reflec-
tion (R) of the generated FWM signals as functions of the
wavelength λ and the angle θ of the probe beam at Ef �
0.23 eV. Here the P-polarized waves are used as the probe
and pump beams; the intensities of the pump and probe beams
are taken as 1 and 0.1 MW∕cm2. These intensities lead to a
negligible saturation effect of the graphene. We can see that
three resonant peaks (denoted by 1, 2, and 3) appear in
Figs. 5(b) and 5(c), respectively; these phenomena are origi-
nated from the formation of BICs of the pump and probe
beams in this structure. The resonant modes 1 and 2 corre-
spond to the resonant modes P1 and P2, as shown in Fig. 4(f );
the vertical resonant mode 3 corresponds to the BIC of the
pump beam with the normal incident angle. When all beams
are in BICs, the maxima of the generated FWM signals can
be obtained, as shown by bright dots in Figs. 5(b) and 5(c).
This can be seen more clearly in Fig. 5(d).

In Fig. 5(d), we plot the transmission (black lines) and the
reflection (black triangle lines) as a function of the wavelength
λ. Here, the incident angle of the probe beam is fixed at

Fig. 4. TH enhancement of the (a) and (b) transmitted and
(c) and (d) reflected TH beams as a function of the fundamental
wavelength and the incident angle for S-(P) polarized pump beam.
(e) and (f ) show the absorption spectra of the three-layer structure.
The bound states are denoted by S1, S2, and S3 (P1 and P2) for
S-(P) polarized wave.

Fig. 5. (a) Schematic of the FWM progress in the three-layer struc-
ture when all the waves are at the same wavelength; the incident angles
of the pump and probe beams are 0° and θ, respectively; the angle of
the generated FWM wave is equal to θ because of phase-match con-
dition. (b) and (c) correspond to T and R of the transmitted and re-
flected FWM beams as a function of the FF wavelength and incident
angle of the probe beam. The T and R in the three-layer structure and
freestanding graphene as a function of the fundamental wavelength at
θ � 16.09° corresponding to the maxima when the Fermi energy is
taken as (d) Ef � 0.23 eV and (e) Ef � 0.7 eV. The blue and pink
lines show the absorption spectra under only one incident beam at the
incident angles θ � 0° and θ � 16.09°, respectively.
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θ � 16.09°; the other parameters are identical to those in
Figs. 5(b) and 5(c), where a resonant peak [corresponding
to the red point in Fig. 5(b)] around λ � 1825.57 nm appears.
In order to understand this phenomenon, we also plot the cor-
responding absorption spectra; the blue line corresponds to the
absorption when the beam irradiates the structure with the nor-
mal incident angle; the pink line corresponds to the absorption
spectrum, where the incident angle is taken as 16.09°. We can
see that two absorption peaks for two cases correspond to the
resonant peaks for the generated FWM signals, which also cor-
respond to two BICs for the pump and probe beams. When the
pump and probe beams are located at the BICs, the corre-
sponding EM fields are localized at the graphene layer, and then
the corresponding third-order polarization densities are largely
enhanced. This is the reason why we can observe enhancement
of FWM signals about 6 orders of magnitude around the res-
onant peak at λ � 1825.57 nm. The relative linewidth of the
resonant peak is 0.0346%, which means that good monochro-
maticity of the generated signal is observed again.

After the Fermi energy is tuned to Ef � 0.7 eV, while
other parameters are not changed, the corresponding results
are shown in Fig. 5(e). In such a case, the FWM signal is
enhanced about 9 orders of magnitude around the resonant
peak, and the relative linewidth of the resonant peak reaches
0.00863%. This is because of small imaginary part and low
loss of absorption, which corresponds to strong localization
of the electric field, as described in Fig. 2(a).

For the bare graphene, the previous investigation has shown
that the optical phase conjugation can be tuned in a large range
by changing the phase difference [16]. In fact, the present struc-
ture still possesses such a property. The solid lines and dashed
lines in Fig. 6 represent the transmission T and reflection R of
the optical phase conjugations as a function of the phase
difference between the two parts of the pump beam (the pump
beam is divided into two parts with the same intensity
0.5 MW∕cm2). The intensity and incident angle of the probe
beam are taken as 0.1 MW∕cm2 and 16.09°, respectively; the
other parameters taken here correspond to the maximum in
Fig. 5(c). A period modulation in the generation of optical
phase conjugations is clearly observed; a maximum is reached
when the phase difference is equal to 0°. A minimum appears
when the phase difference is equal to 180°; the period is 360°.

This phenomenon is similar to that in Ref. [16]; that is, we can
also tune the optical phase conjugation in a large range by
changing the phase difference in the present case.

For Case II, as shown in Fig. 7(a), we consider a pump beam
normal to the surface of the structure at the wavelength λ1 and a
probe beam with an incident angle θ2 and the wavelength λ2.
Due to the third-order nonlinear effect of the graphene, the
transmitted and reflected FWM signals at the angle θ3 and
wavelength λ3 are generated. In this process, the following
relations are satisfied:

�
ω3 � 2ω1 −ω2 ⇒

2πc
λ3

� 22πc
λ1
− 2πc

λ2

k3x � 2k1x − k2x ⇒ 2π
λ3

sin θ3 � 22π
λ1
· 0 − 2π

λ2
sin θ2

: (24)

Figures 7(b) and 7(c) display T and R of the generated
FWM signals as a function of the wavelength of the pump
beam λ1 and the angle of the probe beam θ2; the wavelength
of the probe beam is taken as λ2 � 1760.29 nm. The inten-
sities of the pump and probe beams are taken as 1 and
0.1 MW∕cm2; the Fermi energy is Ef � 0.23 eV. It is seen
clearly that there are two vertical resonant modes (at λ1 �
1705.11 nm and λ1 � 1825.57 nm) in every figure, which
correspond to two BICs of the normal pump beam.

When the angles of the probe beam are taken as θ2 � 60°
and θ2 � 7.2°, the probe beam is also in BICs. In such a case,
strong FWM signals at θ3 � 54.4° (Point A) and θ3 � 6.8°
(Point B) are generated [see bright dots in Figs. 7(b) and 7(c)];
the corresponding wavelength for these signals is λ3 �
1653.29 nm. Points A and B are highlighted because the probe
beam, pump beam, and generated FWM signal at these points
are in BICs simultaneously; in such a case, very high generated
efficiency can be obtained. The generated efficiency at point A
is even more prominent because of the better electric field
confinement of the probe beam. These can be seen more clearly
in Fig. 8.

Fig. 6. Transmission (T ) and reflection (R) as a function of the
phase difference between the two parts of the pump beam with the
same intensity.

Fig. 7. (a) Schematic of the FWM progress in the three-layer struc-
ture when the wavelengths of the pump and probe beams (λ1 and λ2)
are not equal, the incident angles of the pump and probe beams are
θ1 � 0° and θ2, respectively. (b) and (c) correspond to the transmitted
and reflected FWM beams as a function of the wavelength λ1 and
incident angle θ2 of the probe beam. The wavelength of the probe
beam is taken as λ2 � 1760.29 nm.
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In Fig. 8(a), we plot T and R as a function of λ1 at θ2 � 60°
and Ef � 0.23 eV, which corresponds to the maxima in
Figs. 7(a) and 7(b). The other parameters are identical with
those in Figs. 7(a) and 7(b). It is clearly seen that two peaks
appear, which are located at λ1 � 1705.11 nm and λ1 �
1825.57 nm. In order to clearly analyze the origin, in Fig. 8(b)
we show the corresponding absorption spectrum of the pump
beam (see blue line); two resonant peaks in the absorption spec-
trum correspond to those shown in Fig. 8(a). Furthermore, we
also show the absorption spectrum of the generated FWM sig-
nal as a function of λ3 (see red line). The resonant absorption
peak appears around λ3 � 1653.29 nm, which corresponds to

λ1 � 1705.11 nm. This means that the pump, probe, and
FWM beams are located at BICs simultaneously in such a case,
which leads to the enhancement of the generated FMW signal
about 6 orders of magnitude. This is in contrast with the other
cases; for example, the FWM signal is enhanced by about 2
orders of magnitude at λ1 � 1825.57 nm because the pump
beam is only in the BIC. When the Fermi energy is tuned
to Ef � 0.7 eV, the similar phenomena are observed; the cor-
responding results are shown in Fig. 8(c). Due to low loss and
strong field localization, in such a case the FWM signal is en-
hanced by about 9 orders of magnitude at λ1 � 1705.11 nm
compared with that in the freestanding monolayer graphene;
the relative line width of the corresponding resonant peak also
reaches 0.0195%. The generation efficiency without the
enhancement of BICs of the pump and FWM beams is shown
away from the peaks in Figs. 8(a) and 8(c); it can be clearly seen
that, at λ1 � 1650 nm, the generation efficiency in the three-
layer structure is nearly as large as that in the freestanding
graphene; at λ1 � 1750 nm, the generation efficiency in the
three-layer structure is about 2 orders of magnitude smaller
than that in the freestanding graphene.

We would like to point out that the purpose of the present
paper is to provide theoretical proof of improved third-order
nonlinear effect in graphene based on BICs. However, it is
more convincing if the experimental observation can be pro-
vided. In fact, it is difficult to control the periodic pattern
of the nanospheres; we have to optimize the structural design
further so that the samples can be fabricated experimentally.
These will be our next tasks.

4. SUMMARY

In summary, we have designed sphere-graphene-slab structures
to improve the third-order nonlinear interaction between the
EM wave and the graphene. The scattering matrix theory to
calculate third-order nonlinear effects in these structures has
been developed. Improved TH generation and FWM signals
from the graphene in these structures has been discussed.
Due to the field localization of the BICs, we have found that
the efficiency of TH generation from the monolayer graphene
in these structures can be enhanced about 7 orders of magni-
tude compared with that in bare graphene. By designing struc-
ture parameters, we can make all beams (the pump beam, probe
beam, and generated FWM signal) be BICs at the same time.
In such a case, the efficiency of FWM in the monolayer gra-
phene can be enhanced about 9 orders of magnitude. It is in-
teresting that the generated TH and FWM signals possess very
good monochromaticity due to the high Q factors of BICs,
which are also sensitive to the incident angle of the wave.
Furthermore, we can also obtain selective generations of TH
and FWM signals for two polarized waves (S and P waves) by
taking suitable BICs. The phenomena can appear at any wave-
length from the mid-infrared to far-infrared band, which are
very beneficial for the design of optical devices.

Funding. National Key R & D Program of China
(2017YFA0303800); National Natural Science Foundation
of China (NSFC) (11574031, 61421001).

Fig. 8. T and R in the three-layer structure and freestanding gra-
phene as a function of the wavelength λ1 with θ2 � 60°, which cor-
respond to a peak when the Fermi energy is taken as (a) Ef � 0.23 eV
and (c) Ef � 0.7 eV, respectively. (b) Blue and pink lines show the
absorption as a function of the wavelengths of the pump or FWM
beams (λ1 or λ3) under one incident beam at the incident angles
0° and θ3, respectively; the two relations are put together via phase
match condition.
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