• Photonics Research
  • Vol. 6, Issue 2, 99 (2018)
Daquan Yang1、2、†, Fei Gao3、†, Qi-Tao Cao3, Chuan Wang2, Yuefeng Ji1、2, and Yun-Feng Xiao3、4、*
Author Affiliations
  • 1School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • 2State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • 3State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
  • 4Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
  • show less
    DOI: 10.1364/PRJ.6.000099 Cite this Article Set citation alerts
    Daquan Yang, Fei Gao, Qi-Tao Cao, Chuan Wang, Yuefeng Ji, Yun-Feng Xiao. Single nanoparticle trapping based on on-chip nanoslotted nanobeam cavities[J]. Photonics Research, 2018, 6(2): 99 Copy Citation Text show less
    References

    [1] D. Erickson, X. Serey, Y. Chen, S. Mandal. Critical review: nanomanipulation using near field photonics. Lab Chip, 11, 995-1009(2011).

    [2] D. G. Grier. A revolution in optical manipulation. Nature, 424, 810-816(2003).

    [3] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett., 11, 288-290(1986).

    [4] A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, Y. Zhang. Nanometric optical tweezers based on nanostructured substrates. Nat. Photonics, 2, 365-370(2008).

    [5] A. Ashkin. History of optical trapping and manipulation of small-neutral particle, atoms, and molecules. IEEE J. Sel. Top. Quantum Electron., 6, 841-856(2000).

    [6] A. Ashkin. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett., 24, 156-159(1970).

    [7] K. C. Neuman, S. M. Block. Optical trapping. Rev. Sci. Instrum., 75, 2787-2809(2004).

    [8] A. Ashkin, J. M. Dziedzic, T. Yamane. Optical trapping and manipulation of single cells using infrared laser beams. Nature, 330, 769-771(1987).

    [9] P. W. H. Pinkse, T. Fischer, P. Maunz, G. Rempe. Trapping an atom with single photons. Nature, 404, 365-368(2000).

    [10] L. Jauffred, S. M. R. Taheri, R. Schmitt, H. Linke, L. B. Oddershede. Optical trapping of gold nanoparticles in air. Nano Lett., 15, 4713-4719(2015).

    [11] E. Vetsch, S. T. Dawkins, R. Mitsch, D. Reitz, P. Schneeweiss, A. Rauschenbeutel. Nanofiber-based optical trapping of cold neutral atoms. IEEE J. Sel. Top. Quantum Electron., 18, 1763-1770(2012).

    [12] M. J. Morrissey, K. Deasy, M. Frawley, R. Kumar, E. Prel, L. Russell, V. G. Truong, S. N. Chormaic. Spectroscopy, manipulation and trapping of neutral atoms, molecules, and other particles using optical nanofibers: a review. Sensors, 13, 10449-10481(2013).

    [13] J. Huang, X. Liu, Y. Zhang, B. Li. Optical trapping and orientation of Escherichia coli cells using two tapered fiber probes. Photon. Res., 3, 308-312(2015).

    [14] F. Lindenfelser, B. Keitch, D. Kienzler, D. Bykov, P. Uebel, M. A. Schmidt, P. St. J. Russell, J. P. Home. An ion trap built with photonic crystal fibre technology. Rev. Sci. Instrum., 86, 033107(2015).

    [15] D. Grass, J. Fesel, S. G. Hofer, N. Kiesel, M. Aspelmeyer. Optical trapping and control of nanoparticles inside evacuated hollow core photonic crystal fibers. Appl. Phys. Lett., 108, 221103(2016).

    [16] M. D. Baaske, F. Vollmer. Optical observation of single atomic ions interacting with plasmonic nanorods in aqueous solution. Nat. Photonics, 10, 733-739(2016).

    [17] Y. Zhi, X. Yu, Q. Gong, L. Yang, Y. Xiao. Single nanoparticle detection using optical microcavities. Adv. Mater., 29, 1604920(2017).

    [18] B. Li, W. R. Clements, X. Yu, K. Shi, Q. Gong, Y. Xiao. Single nanoparticle detection using split-mode microcavity Raman lasers. Proc. Natl. Acad. Sci. USA, 111, 14657-14662(2014).

    [19] L. Shao, X. Jiang, X. Yu, B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. Xiao, Q. Gong. Detection of single nanoparticles and lentiviruses using microcavity resonance broadening. Adv. Mater., 25, 5616-5620(2013).

    [20] J. Zhu, Y. Zhong, H. Liu. Impact of nanoparticle-induced scattering of an azimuthally propagating mode on the resonance of whispering gallery microcavities. Photon. Res., 5, 396-405(2017).

    [21] M. L. Juan, M. Righini, R. Quidant. Plasmon nano-optical tweezers. Nat. Photonics, 5, 349-356(2011).

    [22] K. Wang, E. Schonbrun, P. Steinvurzel, K. B. Crozier. Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink. Nat. Commun., 2, 469-475(2011).

    [23] J. C. Ndukaife, A. V. Kildishev, A. Nnanna, V. M. Shalaev, S. T. Wreley, A. Boltasseva. Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer. Nat. Nanotechnol., 11, 53-59(2016).

    [24] Z. Chen, F. Zhang, Q. Zhang, J. Ren, H. Hao, X. Duan, P. Zhang, T. Zhang, Y. Gu, Q. Gong. Blue-detuned optical atom trapping in a compact plasmonic structure. Photon. Res., 5, 436-440(2017).

    [25] B. S. Schmidt, A. H. J. Yang, D. Erickson, M. Lipson. Optofluidic trapping and transport on solid core waveguides within a microfluidic device. Opt. Express, 15, 14322-14334(2007).

    [26] T. H. Stievater, D. A. Kozak, M. W. Pruessner, R. Mahon, D. Park, W. S. Rabinovich, F. K. Fatemi. Modal characterization of nanophotonic waveguides for atom trapping. Opt. Mater. Express, 6, 3826-3837(2016).

    [27] A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, D. Erickson. Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides. Nature, 457, 71-75(2009).

    [28] A. H. J. Yang, T. Lerdsuchatawanich, D. Erickson. Forces and transport velocities for a particle in a slot waveguide. Nano Lett., 9, 1182-1188(2009).

    [29] S. Y. Lin, E. Schonbrun, K. Crozier. Optical manipulation with planar silicon microring resonators. Nano Lett., 10, 2408-2411(2010).

    [30] P. T. Lin, P. T. Lee. All-optical controllable trapping and transport of subwavelength particles on a tapered photonic crystal waveguide. Opt. Lett., 36, 424-426(2011).

    [31] M. G. Scullion, Y. Arita, T. F. Krauss, K. Dholakia. Enhancement of optical forces using slow light in a photonic crystal waveguide. Optica, 2, 816-821(2015).

    [32] N. D. Gupta, V. Janyani. Design and analysis of light trapping in thin film GaAs solar cells using 2-D photonic crystal structures at front surface. IEEE J. Sel. Top. Quantum Electron., 53, 4800109(2017).

    [33] M. Barth, O. Benson. Manipulation of dielectric particles using photonic crystal cavities. Appl. Phys. Lett., 89, 253114(2006).

    [34] A. Rahmani, P. C. Chaumet. Optical trapping near a photonic crystal. Opt. Express, 14, 6353-6358(2006).

    [35] T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, H. Taniyama. Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity. Nat. Photonics, 1, 49-52(2007).

    [36] C. A. Mejia, N. Huang, M. L. Povinelli. Optical trapping of metal-dielectric nanoparticle clusters near photonic crystal microcavities. Opt. Lett., 37, 3690-3692(2012).

    [37] N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, R. Houdre. Observation of backaction and self-induced trapping in a planar hollow photonic crystal cavity. Phys. Rev. Lett., 110, 123601(2013).

    [38] A. Nirmal, A. K. K. Kyaw, J. Wang, K. Dev, X. Sun, H. V. Demir. Light trapping in inverted organic photovoltaics with nanoimprinted ZnO photonic crystals. IEEE J. Photovoltaics, 7, 545-549(2017).

    [39] M. Tonin, F. M. Mor, L. Forro, S. Jeney, R. Houdre. Thermal fluctuation analysis of singly optically trapped spheres in hollow photonic crystal cavities. Appl. Phys. Lett., 109, 241107(2016).

    [40] P. T. Lin, T. W. Lu, P. T. Lee. Photonic crystal waveguide cavity with waist design for efficient trapping and detection of nanoparticles. Opt. Express, 22, 6791-6800(2014).

    [41] X. Serey, S. Mandal, D. Erickson. Comparison of silicon photonic crystal resonator designs for optical trapping of nanomaterials. Nanotechnology, 21, 305202(2010).

    [42] S. Mandal, X. Serey, D. Erickson. Nanomanipulation using silicon photonic crystal resonators. Nano Lett., 10, 99-104(2010).

    [43] D. Yang, B. Wang, X. Chen, C. Wang, Y. Ji. Ultracompact on-chip multiplexed sensor array based on dense integration of flexible 1-D photonic crystal nanobeam cavity with large free spectral range and high Q-factor. IEEE Photon. J., 9, 4900412(2017).

    [44] Y. Chen, X. Serey, R. Sarkar, P. Chen, D. Erickson. Controlled photonic manipulation of proteins and other nanomaterials. Nano Lett., 12, 1633-1637(2012).

    [45] S. Lin, W. Zhu, Y. Jin, K. B. Crozier. Surface-enhanced Raman scattering with Ag nanoparticles optically trapped by a photonic crystal cavity. Nano Lett., 13, 559-563(2013).

    [46] C. Renaut, B. Cluzel, J. Dellinger, L. Lalouat, E. Picard, D. Peyrade, E. Hadji, F. Fornel. On chip shapeable optical tweezers. Sci. Rep., 3, 2290(2013).

    [47] C. Ciminelli, D. Conteduca, F. DellOlio, M. N. Armenise. Design of an optical trapping device based on an ultra-high Q/V resonant structure. IEEE Photon. J., 6, 0600916(2014).

    [48] H. Du, X. Zhang, J. Deng, Y. Zhao, F. S. Chau, G. Y. Zhou. Lateral shearing optical gradient force in coupled nanobeam photonic crystal cavities. Appl. Phys. Lett., 108, 171102(2016).

    [49] S. Han, Y. Shi. Systematic analysis of optical gradient force in photonic crystal nanobeam cavities. Opt. Express, 24, 452-458(2016).

    [50] F. Liang, Q. Quan. Detecting single gold nanoparticles (1.8 nm) with ultrahigh-q air mode photonic crystal nanobeam cavities. ACS Photon., 2, 1692-1697(2015).

    [51] J. T. Robinson, C. Manolatou, L. Chen, M. Lipson. Ultrasmall mode volumes in dielectric optical microcavities. Phys. Rev. Lett., 95, 143901(2005).

    [52] COMSOL Inc.

    [53] J. Ma, L. J. Martinez, M. L. Povinelli. Optical trapping via guided resonance modes in a Slot-Suzuki-phase photonic crystal lattice. Opt. Express, 20, 6816-6824(2012).

    [54] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade. Photonic Crystals: Molding the Flow of Light(2008).

    [55] D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Lonar, Q. Quan. High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing. Appl. Phys. Lett., 105, 063118(2014).

    [56] D. Yang, H. Tian, Y. Ji. High-Q and high-sensitivity width-modulated photonic crystal single nanobeam air-mode cavity for refractive index sensing. Appl. Opt., 54, 1-5(2015).

    [57] C. W. Gardiner. Handbook of Stochastic Methods: For Physics, Chemistry, and the Natural Sciences(2004).

    CLP Journals

    [1] Shuai Wan, Rui Niu, Hong-Liang Ren, Chang-Ling Zou, Guang-Can Guo, Chun-Hua Dong. Experimental demonstration of dissipative sensing in a self-interference microring resonator[J]. Photonics Research, 2018, 6(7): 681

    [2] Zijie Wang, Xiaobei Zhang, Qi Zhang, Yiqi Chen, Yong Yang, Yang Yu, Yang Wang, Yanhua Dong, Yi Huang, Tingyun Wang. Monitoring and identifying pendant droplets in microbottle resonators[J]. Photonics Research, 2022, 10(3): 662

    Daquan Yang, Fei Gao, Qi-Tao Cao, Chuan Wang, Yuefeng Ji, Yun-Feng Xiao. Single nanoparticle trapping based on on-chip nanoslotted nanobeam cavities[J]. Photonics Research, 2018, 6(2): 99
    Download Citation