• Photonics Research
  • Vol. 10, Issue 7, 1763 (2022)
Pawan Kumar1、2、*, Sina Saravi1, Thomas Pertsch1、2, Frank Setzpfandt1, and Andrey A. Sukhorukov3、4
Author Affiliations
  • 1Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University Jena, 07745 Jena, Germany
  • 2Fraunhofer Institute for Applied Optics and Precision Engineering, 07745 Jena, Germany
  • 3Research School of Physics, Australian National University, Canberra, ACT 2601, Australia
  • 4ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), Australia
  • show less
    DOI: 10.1364/PRJ.450410 Cite this Article Set citation alerts
    Pawan Kumar, Sina Saravi, Thomas Pertsch, Frank Setzpfandt, Andrey A. Sukhorukov. Nonlinear quantum spectroscopy with parity–time-symmetric integrated circuits[J]. Photonics Research, 2022, 10(7): 1763 Copy Citation Text show less
    References

    [1] D. Klyshko. Photons and Nonlinear Optics(1988).

    [2] L. J. Wang, X. Y. Zou, L. Mandel. Induced coherence without induced emission. Phys. Rev. A, 44, 4614-4622(1991).

    [3] X. Y. Zou, L. J. Wang, L. Mandel. Induced coherence and indistinguishability in optical interference. Phys. Rev. Lett., 67, 318-321(1991).

    [4] H. M. Wiseman, K. Molmer. Induced coherence with and without induced emission. Phys. Lett. A, 270, 245-248(2000).

    [5] M. Lahiri, A. Hochrainer, R. Lapkiewicz, G. B. Lemos, A. Zeilinger. Partial polarization by quantum distinguishability. Phys. Rev. A, 95, 033816(2017).

    [6] M. V. Chekhova, Z. Y. Ou. Nonlinear interferometers in quantum optics. Adv. Opt. Photonics, 8, 104-155(2016).

    [7] Z. Y. Ou, X. Y. Li. Quantum su(1,1) interferometers: basic principles and applications. APL Photonics, 5, 080902(2020).

    [8] C. M. Caves. Reframing su(1,1) interferometry. Adv. Quantum Technol., 3, 1900138(2020).

    [9] A. Ferreri, M. Santandrea, M. Stefszky, K. H. Luo, H. Herrmann, C. Silberhorn, P. R. Sharapova. Spectrally multimode integrated su(1,1) interferometer. Quantum, 5, 461(2021).

    [10] D. A. Kalashnikov, A. V. Paterova, S. P. Kulik, L. A. Krivitsky. Infrared spectroscopy with visible light. Nat. Photonics, 10, 98-102(2016).

    [11] G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz, A. Zeilinger. Quantum imaging with undetected photons. Nature, 512, 409-412(2014).

    [12] A. V. Paterova, H. Z. Yang, C. W. An, D. A. Kalashnikov, L. A. Krivitsky. Tunable optical coherence tomography in the infrared range using visible photons. Quantum Sci. Technol., 3, 025008(2018).

    [13] A. V. Paterova, L. A. Krivitsky. Nonlinear interference in crystal superlattices. Light Sci. Appl., 9, 82(2020).

    [14] A. Paterova, S. Lung, D. A. Kalashnikov, L. A. Krivitsky. Nonlinear infrared spectroscopy free from spectral selection. Sci. Rep., 7, 42608(2017).

    [15] A. Valles, G. Jimenez, L. J. Salazar-Serrano, J. P. Torres. Optical sectioning in induced coherence tomography with frequency-entangled photons. Phys. Rev. A, 97, 023824(2018).

    [16] C. Lindner, S. Wolf, J. Kiessling, F. Kuhnemann. Fourier transform infrared spectroscopy with visible light. Opt. Express, 28, 4426-4432(2020).

    [17] M. Kutas, B. Haase, P. Bickert, F. Riexinger, D. Molter, G. von Freymann. Terahertz quantum sensing. Sci. Adv., 6, eaaz8065(2020).

    [18] M. Ravaro, E. Guillotel, M. Le Du, C. Manquest, X. Marcadet, S. Ducci, V. Berger, G. Leo. Nonlinear measurement of mid-infrared absorption in AlOx waveguides. Appl. Phys. Lett., 92, 151111(2008).

    [19] A. S. Solntsev, P. Kumar, T. Pertsch, A. A. Sukhorukov, F. Setzpfandt. LiNbO3 waveguides for integrated SPDC spectroscopy. APL Photonics, 3, 021301(2018).

    [20] P. Kumar, S. Saravi, T. Pertsch, F. Setzpfandt. Integrated induced-coherence spectroscopy in a single nonlinear waveguide. Phys. Rev. A, 101, 053860(2020).

    [21] T. Ono, G. F. Sinclair, D. Bonneau, M. G. Thompson, J. C. F. Matthews, J. G. Rarity. Observation of nonlinear interference on a silicon photonic chip. Opt. Lett., 44, 1277-1280(2019).

    [22] A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, D. N. Christodoulides. Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett., 103, 093902(2009).

    [23] C. E. Ruter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, D. Kip. Observation of parity-time symmetry in optics. Nat. Phys., 6, 192-195(2010).

    [24] R. El-Ganainy, K. G. Makris, D. N. Christodoulides, Z. H. Musslimani. Theory of coupled optical PT-symmetric structures. Opt. Lett., 32, 2632-2634(2007).

    [25] K. G. Makris, R. El-Ganainy, D. N. Christodoulides, Z. H. Musslimani. Beam dynamics in PT symmetric optical lattices. Phys. Rev. Lett., 100, 103904(2008).

    [26] R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, S. Rotter, D. N. Christodoulides. Non-Hermitian physics and PT symmetry. Nat. Phys., 14, 11-19(2018).

    [27] Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, D. N. Christodoulides. Unidirectional invisibility induced by PT-symmetric periodic structures. Phys. Rev. Lett., 106, 213901(2011).

    [28] H. Hodaei, M. A. Miri, M. Heinrich, D. N. Christodoulides, M. Khajavikhan. Parity-time-symmetric microring lasers. Science, 346, 975-978(2014).

    [29] J. Wiersig. Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: application to microcavity sensors for single-particle detection. Phys. Rev. Lett., 112, 203901(2014).

    [30] H. Hodaei, A. U. Hassan, S. Wittek, H. Garcia-Gracia, R. El-Ganainy, D. N. Christodoulides, M. Khajavikhan. Enhanced sensitivity at higher-order exceptional points. Nature, 548, 187-200(2017).

    [31] M. Ornigotti, A. Szameit. Quasi PT-symmetry in passive photonic lattices. J. Opt., 16, 065501(2014).

    [32] P. B. Main, P. J. Mosley, A. V. Gorbach. Spontaneous parametric down-conversion in asymmetric couplers: photon purity enhancement and intrinsic spectral filtering. Phys. Rev. A, 100, 053815(2019).

    [33] J. Su, L. Cui, J. M. Li, Y. H. Liu, X. Y. Li, Z. Y. Ou. Versatile and precise quantum state engineering by using nonlinear interferometers. Opt. Express, 27, 20479-20492(2019).

    [34] J. M. Li, J. Su, L. Cui, T. Q. Xie, Z. Y. Ou, X. Y. Li. Generation of pure-state single photons with high heralding efficiency by using a three-stage nonlinear interferometer. Appl. Phys. Lett., 116, 204002(2020).

    [35] D. S. Hum, M. M. Fejer. Quasi-phasematching. C. R. Phys., 8, 180-198(2007).

    [36] M. Kumar, P. Kumar, A. Vega, M. A. Weissflog, T. Pertsch, F. Setzpfandt. Mid-infrared photon pair generation in AgGaS2. Appl. Phys. Lett., 119, 244001(2021).

    [37] Y. M. Sua, H. Fan, A. Shahverdi, J. Y. Chen, Y. P. Huang. Direct generation and detection of quantum correlated photons with 3.2 μm wavelength spacing. Sci. Rep., 7, 17494(2017).

    [38] D. A. Antonosyan, A. S. Solntsev, A. A. Sukhorukov. Effect of loss on photon-pair generation in nonlinear waveguide arrays. Phys. Rev. A, 90, 043845(2014).

    [39] D. A. Antonosyan, A. S. Solntsev, A. A. Sukhorukov. Photon-pair generation in a quadratically nonlinear parity-time symmetric coupler. Photonics Res., 6, A6-A9(2018).

    [40] A. Belsley, T. Pertsch, F. Setzpfandt. Generating path entangled states in waveguide systems with second-order nonlinearity. Opt. Express, 28, 28792-28809(2020).

    [41] P. T. Lin, V. Singh, J. J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, A. Agarwal. Chip-scale mid-infrared chemical sensors using air-clad pedestal silicon waveguides. Lab Chip, 13, 2161-2166(2013).

    [42] M. C. Estevez, M. Alvarez, L. M. Lechuga. Integrated optical devices for lab-on-a-chip biosensing applications. Laser Photonics Rev., 6, 463-487(2012).

    [43] E. Ryckeboer, R. Bockstaele, M. Vanslembrouck, R. Baets. Glucose sensing by waveguide-based absorption spectroscopy on a silicon chip. Biomed. Opt. Express, 5, 1636-1648(2014).

    Pawan Kumar, Sina Saravi, Thomas Pertsch, Frank Setzpfandt, Andrey A. Sukhorukov. Nonlinear quantum spectroscopy with parity–time-symmetric integrated circuits[J]. Photonics Research, 2022, 10(7): 1763
    Download Citation