• Photonics Research
  • Vol. 10, Issue 7, 1763 (2022)
Pawan Kumar1、2、*, Sina Saravi1, Thomas Pertsch1、2, Frank Setzpfandt1, and Andrey A. Sukhorukov3、4
Author Affiliations
  • 1Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University Jena, 07745 Jena, Germany
  • 2Fraunhofer Institute for Applied Optics and Precision Engineering, 07745 Jena, Germany
  • 3Research School of Physics, Australian National University, Canberra, ACT 2601, Australia
  • 4ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), Australia
  • show less
    DOI: 10.1364/PRJ.450410 Cite this Article Set citation alerts
    Pawan Kumar, Sina Saravi, Thomas Pertsch, Frank Setzpfandt, Andrey A. Sukhorukov. Nonlinear quantum spectroscopy with parity–time-symmetric integrated circuits[J]. Photonics Research, 2022, 10(7): 1763 Copy Citation Text show less

    Abstract

    We propose a novel quantum nonlinear interferometer design that incorporates a passive parity–time (PT)-symmetric coupler sandwiched between two nonlinear sections where signal–idler photon pairs are generated. The PT symmetry enables efficient coupling of the longer-wavelength idler photons and facilitates the sensing of losses in the second waveguide exposed to analyte under investigation, whose absorption can be inferred by measuring only the signal intensity at a shorter wavelength where efficient detectors are readily available. Remarkably, we identify a new phenomenon of sharp signal intensity fringe shift at critical idler loss values, which is distinct from the previously studied PT symmetry breaking. We discuss how such unconventional properties arising from quantum interference can provide a route to enhancing the sensing of analytes and facilitate broadband spectroscopy applications in integrated photonic platforms.
    Ai(z)z=MiAi(z),

    View in Article

    Mi=[i(β¯i+Δβi)iCiiCii(β¯iΔβi)γi].

    View in Article

    λ˜±=±ξiγi2,V+=[γi+ξi2iΔβi2iCi]T,V=[2iCiγi+ξi2iΔβi]T,

    View in Article

    Ai(z)=α+eλ+zV++αeλzV.

    View in Article

    ϕ1,ni(z)z=i(βs+βi(ni))ϕ1,ni(z)+δ1,niAp(z),

    View in Article

    ϕ(l)=[10]Tϕ0(l)

    View in Article

    ϕ0(l)=[Ap(0)l/2]·ei(βs+βi(1)+ΔβNL2)lsinc(ΔβNLl2),

    View in Article

    ϕ(z)z=(iβs1+Mi)ϕ(z),

    View in Article

    ϕ(l+L)=ei(βs+β¯i)LeγiL/2×[cosh2ΘeξiL/2sinh2ΘeξiL/2isinhΘcoshΘ(eξiL/2eξiL/2)]ϕ0(l),

    View in Article

    ϕ(2l+L)=[eiβi(1)l00eiβi(2)l]eiβslϕ(l+L)+[10]ϕ0eiβp(l+L),

    View in Article

    I1s=I11+I12+I12(s).

    View in Article

    ϕ12(s)(z,z)z={iβsϕ12(s)(z,z)for  zz0otherwise,

    View in Article

    I12(s)(z)=lz|ϕ12(s)(z,z)|2dz=2γilz|ϕ12(z)|2dz,for  z>l,

    View in Article

    I11(2l+L)={1+|Vγi|2+2Re[Vγi×ei(ΔβNL+K)(L+l)]}|ϕ0|2,

    View in Article

    Vγi=eiΔβiLγiL/2[coshξiL2+(1+2sinh2Θ)sinhξiL2].

    View in Article

    Vγi=eγiL2(cosσiL2+γiσisinσiL2)  withσi=(2Ci)2γi2

    View in Article

    Vγi=eγiL2(coshηiL2+γiηisinhηiL2)withηi=γi2(2Ci)2.

    View in Article

    Vγcr=0.

    View in Article

    ΔβNL=Δ(1vg)×Δωsωp,

    View in Article

    ϕ11(z)z=i(βs+βi(1))ϕ11(z)+Ap(z),withϕ11(0)=0.(A1)

    View in Article

    Ap(z)=Ap(0)×cosKz×eiβpz=Ap(0)2(eiKz+eiKz)eiβpz=Ap(0)2[ei(βpK)z+ei(βp+K)z].(A2)

    View in Article

    ϕ˜1,1(z)z=Ap(0)2eiΔβNLz.(A3)

    View in Article

    ϕ˜1,1(z)ϕ˜1,1(0)=Ap(0)2eiΔβNLz1iΔβNL=Ap(0)×z2eiΔβNLz2sinc(ΔβNLz2),(A4)

    View in Article

    ϕ1,1(z)=Ap(0)×z2ei(βs+βi(1)+ΔβNL2)zsinc(ΔβNLz2).(A5)

    View in Article

    ϕ(l)=[ϕ11(l)ϕ12(l)]=[10]ϕ0(l),(A6)

    View in Article

    ϕ(z)z=(iβs1+Mi)ϕ(z),(A7)

    View in Article

    ϕ(z)=α+eλ¯+(zl)V++αeλ¯(zl)V.(A8)

    View in Article

    α+=(γi+ξi2iΔβi)ϕ0(l)(γi+ξi2iΔβi)2+(2iCi)2,(A9)

    View in Article

    α=(2iCi)ϕ0(l)(γi+ξi2iΔβi)2+(2iCi)2.(A10)

    View in Article

    ϕ(z)=ei(βs+β¯i)(zl)eγi(zl)/2×[cosh2Θeξi(zl)/2sinh2Θeξi(zl)/2isinhΘcoshΘ[eξi(zl)/2eξi(zl)/2]]ϕ0(l),(A11)

    View in Article

    ϕ12(s)(z,z)=[i2γi×ϕ12(z)]eiβs(zl),lzl+L,(A12)

    View in Article

    I11(2l+L)={1+|Vγi|2+2Re[Vγi×ei(ΔβNL+K)(L+l)]}|ϕ0|2,(B1)

    View in Article

    Vγi=eiΔβiLγiL/2[coshξiL2+(1+2sinh2Θ)sinhξiL2],(B2)

    View in Article

    I12(2l+L)=eγiL|sinh2Θ×sinhξiL2|2|ϕ0(l)|2.(B3)

    View in Article

    tanσiL2=σiγi.(B4)

    View in Article

    Pawan Kumar, Sina Saravi, Thomas Pertsch, Frank Setzpfandt, Andrey A. Sukhorukov. Nonlinear quantum spectroscopy with parity–time-symmetric integrated circuits[J]. Photonics Research, 2022, 10(7): 1763
    Download Citation