• Photonics Research
  • Vol. 10, Issue 6, 1440 (2022)
Guohui Li1, Huihui Pi1, Yanfu Wei1, Bolin Zhou1, Ya Gao1, Rong Wen1, Yuying Hao1, Han Zhang2、4, Beng S. Ong3、5, and Yanxia Cui1、*
Author Affiliations
  • 1College of Physics and Optoelectronics, Key Laboratory of Interface Science and Engineering in Advanced Materials, Key Laboratory of Advanced Transducers and Intelligent Control System of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
  • 2Collaborative Innovation Centre for Optoelectronic Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, China
  • 3Department of Chemistry, Research Centre of Excellence for Organic Electronics, Institute of Advanced Materials, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
  • 4e-mail: hzhang@szu.edu.cn
  • 5e-mail: bong@hkbu.edu.hk
  • show less
    DOI: 10.1364/PRJ.452620 Cite this Article Set citation alerts
    Guohui Li, Huihui Pi, Yanfu Wei, Bolin Zhou, Ya Gao, Rong Wen, Yuying Hao, Han Zhang, Beng S. Ong, Yanxia Cui. Passivation of degradation path enables high performance perovskite nanoplatelet lasers with high operational stability[J]. Photonics Research, 2022, 10(6): 1440 Copy Citation Text show less
    References

    [1] H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, X. Y. Zhu. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater., 14, 636-642(2015).

    [2] B. R. Sutherland, S. Hoogland, M. M. Adachi, C. T. O. Wong, E. H. Sargent. Conformal organohalide perovskites enable lasing on spherical resonators. ACS Nano, 8, 10947-10952(2014).

    [3] Q. Zhang, S. T. Ha, X. Liu, T. C. Sum, Q. Xiong. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers. Nano Lett., 14, 5995-6001(2014).

    [4] M. T. Hill, M. C. Gather. Advances in small lasers. Nat. Photonics, 8, 908-918(2014).

    [5] Q. Wei, X. Li, C. Liang, Z. Zhang, J. Guo, G. Hong, G. Xing, W. Huang. Recent progress in metal halide perovskite micro- and nanolasers. Adv. Opt. Mater., 7, 1900080(2019).

    [6] K. Wang, S. Wang, S. Xiao, Q. Song. Recent advances in perovskite micro- and nanolasers. Adv. Opt. Mater., 6, 1800278(2018).

    [7] B. R. Sutherland, E. H. Sargent. Perovskite photonic sources. Nat. Photonics, 10, 295-302(2016).

    [8] Y. Zhang, C.-K. Lim, Z. Dai, G. Yu, J. W. Haus, H. Zhang, P. N. Prasad. Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities. Phys. Rep., 795, 1-51(2019).

    [9] A. P. Schlaus, M. S. Spencer, K. Miyata, F. Liu, X. Wang, I. Datta, M. Lipson, A. Pan, X. Y. Zhu. How lasing happens in CsPbBr3 perovskite nanowires. Nat. Commun., 10, 265(2019).

    [10] Y. Liu, J. Cui, K. Du, H. Tian, Z. He, Q. Zhou, Z. Yang, Y. Deng, D. Chen, X. Zuo, Y. Ren, L. Wang, H. Zhu, B. Zhao, D. Di, J. Wang, R. H. Friend, Y. Jin. Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures. Nat. Photonics, 13, 760-764(2019).

    [11] M. Green, E. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, X. Hao. Solar cell efficiency tables (version 57). Prog. Photovolt. Res. Appl., 29, 3-15(2021).

    [12] Y. Chen, X. Zuo, Y. He, F. Qian, S. Zuo, Y. Zhang, L. Liang, Z. Chen, K. Zhao, Z. Liu, J. Gou, S. Liu. Dual passivation of perovskite and SnO2 for high-efficiency MAPbI3 perovskite solar cells. Adv. Sci., 8, 2001466(2021).

    [13] S. A. Veldhuis, P. P. Boix, N. Yantara, M. Li, T. C. Sum, N. Mathews, S. G. Mhaisalkar. Perovskite materials for light-emitting diodes and lasers. Adv. Mater., 28, 6804-6834(2016).

    [14] G. Li, R. Gao, Y. Han, A. Zhai, Y. Liu, Y. Tian, B. Tian, Y. Hao, S. Liu, Y. Wu, Y. Cui. High detectivity photodetectors based on perovskite nanowires with suppressed surface defects. Photon. Res., 8, 1862-1874(2020).

    [15] J. S. Manser, J. A. Christians, P. V. Kamat. Intriguing optoelectronic properties of metal halide perovskites. Chem. Rev., 116, 12956-13008(2016).

    [16] Y. Jia, R. A. Kerner, A. J. Grede, B. P. Rand, N. C. Giebink. Continuous-wave lasing in an organic–inorganic lead halide perovskite semiconductor. Nat. Photonics, 11, 784-788(2017).

    [17] C. Qin, A. S. D. Sandanayaka, C. Zhao, T. Matsushima, D. Zhang, T. Fujihara, C. Adachi. Stable room-temperature continuous-wave lasing in quasi-2D perovskite films. Nature, 585, 53-57(2020).

    [18] S. W. Eaton, M. Lai, N. A. Gibson, A. B. Wong, L. Dou, J. Ma, L.-W. Wang, S. R. Leone, P. Yang. Lasing in robust cesium lead halide perovskite nanowires. Proc. Natl. Acad. Sci. USA, 113, 1993-1998(2016).

    [19] B. Tang, H. Dong, L. Sun, W. Zheng, Q. Wang, F. Sun, X. Jiang, A. Pan, L. Zhang. Single-mode lasers based on cesium lead halide perovskite submicron spheres. ACS Nano, 11, 10681-10688(2017).

    [20] C. Zhao, W. Tian, J. Liu, Q. Sun, J. Luo, H. Yuan, B. Gai, J. Tang, J. Guo, S. Jin. Stable two-photon pumped amplified spontaneous emission from millimeter-sized CsPbBr3 single crystals. J. Phys. Chem. Lett., 10, 2357-2362(2019).

    [21] M.-G. Ju, M. Chen, Y. Zhou, J. Dai, L. Ma, N. P. Padture, X. C. Zeng. Toward eco-friendly and stable perovskite materials for photovoltaics. Joule, 2, 1231-1241(2018).

    [22] Y. Yan, T. Pullerits, K. Zheng, Z. Liang. Advancing tin halide perovskites: strategies toward the ASnX3 paradigm for efficient and durable optoelectronics. ACS Energy Lett., 5, 2052-2086(2020).

    [23] J. Luo, X. Wang, S. Li, J. Liu, Y. Guo, G. Niu, L. Yao, Y. Fu, L. Gao, Q. Dong, C. Zhao, M. Leng, F. Ma, W. Liang, L. Wang, S. Jin, J. Han, L. Zhang, J. Etheridge, J. Wang, Y. Yan, E. H. Sargent, J. Tang. Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature, 563, 541-545(2018).

    [24] Y. Jia, R. A. Kerner, A. J. Grede, B. P. Rand, N. C. Giebink. Factors that limit continuous-wave lasing in hybrid perovskite semiconductors. Adv. Opt. Mater., 8, 1901514(2020).

    [25] Z. Fan, H. Xiao, Y. Wang, Z. Zhao, Z. Lin, H.-C. Cheng, S.-J. Lee, G. Wang, Z. Feng, W. A. Goddard, Y. Huang, X. Duan. Layer-by-layer degradation of methylammonium lead tri-iodide perovskite microplates. Joule, 1, 548-562(2017).

    [26] F. Mathies, P. Brenner, G. Hernandez-Sosa, I. A. Howard, U. W. Paetzold, U. Lemmer. Inkjet-printed perovskite distributed feedback lasers. Opt. Express, 26, A144-A152(2018).

    [27] X. Li, K. Wang, M. Chen, S. Wang, Y. Fan, T. Liang, Q. Song, G. Xing, Z. Tang. Stable whispering gallery mode lasing from solution-processed formamidinium lead bromide perovskite microdisks. Adv. Opt. Mater., 8, 2000030(2020).

    [28] Q. Zhang, Q. Shang, R. Su, T. T. H. Do, Q. Xiong. Halide perovskite semiconductor lasers: materials, cavity design, and low threshold. Nano Lett., 21, 1903-1914(2021).

    [29] G. Li, K. Chen, Y. Cui, Y. Zhang, Y. Tian, B. Tian, Y. Hao, Y. Wu, H. Zhang. Stability of perovskite light sources: status and challenges. Adv. Opt. Mater., 8, 1902012(2020).

    [30] T. Leijtens, G. E. Eperon, N. K. Noel, S. N. Habisreutinger, A. Petrozza, H. J. Snaith. Stability of metal halide perovskite solar cells. Adv. Energy Mater., 5, 1500963(2015).

    [31] Q. Fu, X. Tang, B. Huang, T. Hu, L. Tan, L. Chen, Y. Chen. Recent progress on the long-term stability of perovskite solar cells. Adv. Sci., 5, 1700387(2018).

    [32] P. Brenner, O. Bar-On, M. Jakoby, I. Allegro, B. S. Richards, U. W. Paetzold, I. A. Howard, J. Scheuer, U. Lemmer. Continuous wave amplified spontaneous emission in phase-stable lead halide perovskites. Nat. Commun., 10, 988(2019).

    [33] S. Chen, K. Roh, J. Lee, W. K. Chong, Y. Lu, N. Mathews, T. C. Sum, A. Nurmikko. A photonic crystal laser from solution based organo-lead iodide perovskite thin films. ACS Nano, 10, 3959-3967(2016).

    [34] G. L. Whitworth, J. R. Harwell, D. N. Miller, G. J. Hedley, W. Zhang, H. J. Snaith, G. A. Turnbull, I. D. Samuel. Nanoimprinted distributed feedback lasers of solution processed hybrid perovskites. Opt. Express, 24, 23677-23684(2016).

    [35] J. Clark, G. Lanzani. Organic photonics for communications. Nat. Photonics, 4, 438-446(2010).

    [36] K. Wang, G. Li, S. Wang, S. Liu, W. Sun, C. Huang, Y. Wang, Q. Song, S. Xiao. Dark-field sensors based on organometallic halide perovskite microlasers. Adv. Mater., 30, 1801481(2018).

    [37] A. Khan. Laser diodes go green. Nat. Photonics, 3, 432-434(2009).

    [38] K. Domanski, E. A. Alharbi, A. Hagfeldt, M. Grätzel, W. Tress. Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells. Nat. Energy, 3, 61-67(2018).

    [39] N. Li, Y. Luo, Z. Chen, X. Niu, X. Zhang, J. Lu, R. Kumar, J. Jiang, H. Liu, X. Guo, B. Lai, G. Brocks, Q. Chen, S. Tao, D. P. Fenning, H. Zhou. Microscopic degradation in formamidinium-cesium lead iodide perovskite solar cells under operational stressors. Joule, 4, 1743-1758(2020).

    [40] R. Guo, D. Han, W. Chen, L. Dai, K. Ji, Q. Xiong, S. Li, L. K. Reb, M. A. Scheel, S. Pratap, N. Li, S. Yin, T. Xiao, S. Liang, A. L. Oechsle, C. L. Weindl, M. Schwartzkopf, H. Ebert, P. Gao, K. Wang, M. Yuan, N. C. Greenham, S. D. Stranks, S. V. Roth, R. H. Friend, P. Müller-Buschbaum. Degradation mechanisms of perovskite solar cells under vacuum and one atmosphere of nitrogen. Nat. Energy, 6, 977-986(2021).

    [41] D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, O. M. Bakr. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science, 347, 519-522(2015).

    [42] G. Li, T. Che, X. Ji, S. Liu, Y. Hao, Y. Cui, S. Liu. Record-low-threshold lasers based on atomically smooth triangular nanoplatelet perovskite. Adv. Funct. Mater., 29, 1805553(2019).

    [43] Y.-H. Deng. Perovskite decomposition and missing crystal planes in HRTEM. Nature, 594, E6-E7(2021).

    [44] Y. Chen, Q. Meng, Y. Xiao, X. Zhang, J. Sun, C. B. Han, H. Gao, Y. Zhang, Y. Lu, H. Yan. Mechanism of PbI2in situ passivated perovskite films for enhancing the performance of perovskite solar cells. ACS Appl. Mater. Interfaces, 11, 44101-44108(2019).

    [45] S. T. Ha, X. Liu, Q. Zhang, D. Giovanni, T. C. Sum, Q. Xiong. Synthesis of organic–inorganic lead halide perovskite nanoplatelets: towards high-performance perovskite solar cells and optoelectronic devices. Adv. Opt. Mater., 2, 838-844(2014).

    [46] F. Brivio, J. M. Frost, J. M. Skelton, A. J. Jackson, O. J. Weber, M. T. Weller, A. R. Goñi, A. M. A. Leguy, P. R. F. Barnes, A. Walsh. Lattice dynamics and vibrational spectra of the orthorhombic, tetragonal, and cubic phases of methylammonium lead iodide. Phys. Rev. B, 92, 144308(2015).

    [47] Q. Chen, H. Zhou, T.-B. Song, S. Luo, Z. Hong, H.-S. Duan, L. Dou, Y. Liu, Y. Yang. Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Lett., 14, 4158-4163(2014).

    [48] J. Li, S.-H. Wei, L.-W. Wang. Stability of the DX- center in GaAs quantum dots. Phys. Rev. Lett., 94, 185501(2005).

    [49] J. Li, . Comparison between quantum confinement effects of quantum wires and dots. Chem. Mater., 16, 4012-4015(2004).

    [50] S. Ding, S. Li, Q. Sun, Y. Wu, Y. Liu, Z. Li, Y. Cui, H. Wang, Y. Hao, Y. Wu. Enhanced performance of perovskite solar cells by the incorporation of the luminescent small molecule DBP: perovskite absorption spectrum modification and interface engineering. J. Mater. Chem. C, 7, 5686-5694(2019).

    [51] T. Kirchhuebel, M. Gruenewald, F. Sojka, S. Kera, F. Bussolotti, T. Ueba, N. Ueno, G. Rouillé, R. Forker, T. Fritz. Self-assembly of tetraphenyldibenzoperiflanthene (DBP) films on Ag(111) in the monolayer regime. Langmuir, 32, 1981-1987(2016).

    [52] Y. Wang, X. Li, J. Song, L. Xiao, H. Zeng, H. Sun. All-inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics. Adv. Mater., 27, 7101-7108(2015).

    [53] W. G. Nagourney. Quantum Electronics for Atomic Physics(2010).

    [54] Y. Wang, Y. Zhang, P. Zhang, W. Zhang. High intrinsic carrier mobility and photon absorption in the perovskite CH3NH3PbI3. Phys. Chem. Chem. Phys., 17, 11516-11520(2015).

    [55] S. Wang, Q. Ai, T.-Q. Zou, C. Sun, M. Xie. Analysis of radiation effect on thermal conductivity measurement of semi-transparent materials based on transient plane source method. Appl. Therm. Eng., 177, 115457(2020).

    [56] M. D. Birowosuto, D. Cortecchia, W. Drozdowski, K. Brylew, W. Lachmanski, A. Bruno, C. Soci. X-ray scintillation in lead halide perovskite crystals. Sci. Rep., 6, 37254(2016).

    [57] https://www.tedpella.com/vacuum_html/Mica_Grade_V1_Properties.html. https://www.tedpella.com/vacuum_html/Mica_Grade_V1_Properties.html

    Guohui Li, Huihui Pi, Yanfu Wei, Bolin Zhou, Ya Gao, Rong Wen, Yuying Hao, Han Zhang, Beng S. Ong, Yanxia Cui. Passivation of degradation path enables high performance perovskite nanoplatelet lasers with high operational stability[J]. Photonics Research, 2022, 10(6): 1440
    Download Citation