• Journal of Semiconductors
  • Vol. 43, Issue 2, 023101 (2022)
Feilong Ding1, Baokang Peng1, Xi Li2, Lining Zhang1, Runsheng Wang3, Zhitang Song2, and Ru Huang3
Author Affiliations
  • 1School of Electronic and Computer Engineering, Peking University, Shenzhen 518055, China
  • 2Shanghai Institute of Micro-System and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
  • 3Institute of Microelectronics, Peking University, Beijing 100871, China
  • show less
    DOI: 10.1088/1674-4926/43/2/023101 Cite this Article
    Feilong Ding, Baokang Peng, Xi Li, Lining Zhang, Runsheng Wang, Zhitang Song, Ru Huang. A review of compact modeling for phase change memory[J]. Journal of Semiconductors, 2022, 43(2): 023101 Copy Citation Text show less
    References

    [1] T Kim, S Lee. Evolution of phase-change memory for the storage-class memory and beyond. IEEE Trans Electron Devices, 67, 1394(2020).

    [2] M Le Gallo, A Sebastian. An overview of phase-change memory device physics. J Phys D, 53, 213002(2020).

    [3] N B Gong. Multi level cell (MLC) in 3D crosspoint phase change memory array. Sci China Inf Sci, 64, 1(2021).

    [4] S H Lee. Technology scaling challenges and opportunities of memory devices. 2016 IEEE International Electron Devices Meeting (IEDM), 1.1.1(2016).

    [5] D Kau, S Tang, I V Karpov et al. A stackable cross point phase change memory. 2009 IEEE International Electron Devices Meeting, 1(2009).

    [6]

    [7] F Arnaud, P Zuliani, J P Reynard et al. Truly innovative 28nm FDSOI technology for automotive micro-controller applications embedding 16MB phase change memory. 2018 IEEE International Electron Devices Meeting (IEDM), 18.4.1(2018).

    [8] P Cappelletti, R Annunziata, F Arnaud et al. Phase change memory for automotive grade embedded NVM applications. J Phys D, 53, 193002(2020).

    [9]

    [10] R G Neale, D L Nelson, G E Moore. Nonvolatile and reprogramable, read-mostly memory is here. Electronics, 43, 56(1970).

    [11] S Tyson, G Wicker, T Lowrey et al. Nonvolatile, high density, high performance phase-change memory. 2000 IEEE Aerospace Conference, 385(2000).

    [12] S Lai, T Lowrey. OUM – A 180 nm nonvolatile memory cell element technology for stand alone and embedded applications. International Electron Devices Meeting, 36.5.1(2001).

    [13] J H Oh, J H Park, Y S Lim et al. Full integration of highly manufacturable 512Mb PRAM based on 90nm technology. 2006 International Electron Devices Meeting, 1(2006).

    [14] R Annunziata, P Zuliani, M Borghi et al. Phase change memory technology for embedded non volatile memory applications for 90nm and beyond. 2009 IEEE International Electron Devices Meeting, 1(2009).

    [15] D H Im, J I Lee, S L Cho et al. A unified 7.5nm dash-type confined cell for high performance PRAM device. 2008 IEEE International Electron Devices Meeting, 1(2008).

    [16] T Kim, H Choi, M Kim et al. High-performance, cost-effective 2z nm two-deck cross-point memory integrated by self-align scheme for 128 Gb SCM. 2018 IEEE International Electron Devices Meeting, 37.1.1(2018).

    [17] W C Chien, Y H Ho, H Y Cheng et al. A novel self-converging write scheme for 2-bits/cell phase change memory for storage class memory (SCM) application. 2015 Symposium on VLSI Technology, T100(2015).

    [18] N Gong, T Idé, S Kim et al. Signal and noise extraction from analog memory elements for neuromorphic computing. Nat Commun, 9, 2102(2018).

    [19] S Kim, M Ishii, S Lewis et al. NVM neuromorphic core with 64k-cell (256-by-256) phase change memory synaptic array with on-chip neuron circuits for continuous in situ learning. 2015 IEEE International Electron Devices Meeting, 17.1.1(2015).

    [20] F Bedeschi, R Fackenthal, C Resta et al. A bipolar-selected phase change memory featuring multi-level cell storage. IEEE J Solid State Circuits, 44, 217(2009).

    [21] M N Suri, O Bichler, D Querlioz et al. Phase change memory as synapse for ultra-dense neuromorphic systems: Application to complex visual pattern extraction. 2011 International Electron Devices Meeting, 4.4.1(2011).

    [22] M N Suri, O Bichler, D Querlioz et al. Physical aspects of low power synapses based on phase change memory devices. J Appl Phys, 112, 054904(2012).

    [23] T Tuma, A Pantazi, M Le Gallo et al. Stochastic phase-change neurons. Nat Nanotechnol, 11, 693(2016).

    [24] C D Wright, P Hosseini, J A V Diosdado. Beyond von-Neumann computing with nanoscale phase-change memory devices. Adv Funct Mater, 23, 2248(2013).

    [25] Q Wang, G Niu, W Ren et al. Phase change random access memory for neuro-inspired computing. Adv Electron Mater, 7, 2001241(2021).

    [26] P Pavan, L Larcher, A Marmiroli. Floating gate devices: Operation and compact modeling. IEEE Circuits and Devices Magazine, 120(2004).

    [27] Z H Xu, K B Sutaria, C G Yang et al. Hierarchical modeling of Phase Change memory for reliable design. 2012 IEEE 30th International Conference on Computer Design, 115(2012).

    [28] A Sebastian, M Le Gallo, G W Burr et al. Tutorial: Brain-inspired computing using phase-change memory devices. J Appl Phys, 124, 111101(2018).

    [29] H S P Wong, S Raoux, S Kim et al. Phase change memory. Proc IEEE, 98, 2201(2010).

    [30] S Raoux, W Wełnic, D Ielmini. Phase change materials and their application to nonvolatile memories. Chem Rev, 110, 240(2010).

    [31] W Zhang, R Mazzarello, M Wuttig et al. Designing crystallization in phase-change materials for universal memory and neuro-inspired computing. Nat Rev Mater, 4, 150(2019).

    [32] W Zhang, R Mazzarello, E Ma. Phase-change materials in electronics and photonics. MRS Bull, 44, 686(2019).

    [33] D L Eaton. Electrical conduction anomaly of semiconducting glasses in the system As-Te-I. J Am Ceram Soc, 47, 554(1964).

    [34] A Pirovano, A L Lacaita, A Benvenuti et al. Electronic switching in phase-change memories. IEEE Trans Electron Devices, 51, 452(2004).

    [35] D Ielmini. Threshold switching mechanism by high-field energy gain in the hopping transport of chalcogenide glasses. Phys Rev B, 78, 035308(2008).

    [36] C B Peng, L Cheng, M Mansuripur. Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical recording media. J Appl Phys, 82, 4183(1997).

    [37] A L Lacaita, D Ielmini, D Mantegazza. Status and challenges of phase change memory modeling. Solid State Electron, 52, 1443(2008).

    [38] Z J Li, R G D Jeyasingh, J Lee et al. Electrothermal modeling and design strategies for multibit phase-change memory. IEEE Trans Electron Devices, 59, 3561(2012).

    [39] A Redaelli, A Pirovano, A Benvenuti et al. Threshold switching and phase transition numerical models for phase change memory simulations. J Appl Phys, 103, 111101(2008).

    [40] B Schmithusen, P Tikhomirov, E Lyumkis. Phase-change memory simulations using an analytical phase space model. 2008 International Conference on Simulation of Semiconductor Processes and Devices, 57(2008).

    [41] M C Weinberg, D P III Birnie, V A III Shneidman. Crystallization kinetics and the JMAK equation. J Non Cryst Solids, 219, 89(1997).

    [42] W A Johnson, R F Mehl. Reaction kinetics in processes of nucleation and growth. Trans Amn Instit Mining Metall Eng, 135, 416(1939).

    [43] S Senkader, C D Wright. Models for phase-change of Ge2Sb2Te5 in optical and electrical memory devices. J Appl Phys, 95, 504(2003).

    [44] Z Q Chen, H Tong, W Cai et al. Modeling and simulations of the integrated device of phase change memory and ovonic threshold switch selector with a confined structure. IEEE Trans Electron Devices, 68, 1616(2021).

    [45] R A Cobley, C D Wright. Parameterized SPICE model for a phase-change RAM device. IEEE Trans Electron Devices, 53, 112(2006).

    [46] X Q Wei, L P Shi, R Walia et al. HSPICE macromodel of PCRAM for binary and multilevel storage. IEEE Trans Electron Devices, 53, 56(2006).

    [47] R A Cobley, C D Wright, Diosdado J A Vázquez. A model for multilevel phase-change memories incorporating resistance drift effects. IEEE J Electron Devices Soc, 3, 15(2015).

    [48] R A Cobley, H Hayat, C D Wright. A self-resetting spiking phase-change neuron. Nanotechnology, 29, 195202(2018).

    [49] K C Kwong, L Li, J He et al. Verilog-A model for phase change memory simulation. 2008 9th International Conference on Solid-State and Integrated-Circuit Technology, 492(2008).

    [50] P Fantini, A Benvenuti, A Pirovano et al. A compact model for Phase Change Memories. 2006 International Conference on Simulation of Semiconductor Processes and Devices, 162(2006).

    [51] D Ventrice, P Fantini, A Redaelli et al. A phase change memory compact model for multilevel applications. IEEE Electron Device Lett, 28, 973(2007).

    [52] K Sonoda, A Sakai, M Moniwa et al. A compact model of phase-change memory based on rate equations of crystallization and amorphization. IEEE Trans Electron Devices, 55, 1672(2008).

    [53] C Pigot, M Bocquet, F Gilibert et al. Comprehensive phase-change memory compact model for circuit simulation. IEEE Trans Electron Devices, 65, 4282(2018).

    [54] N Xu, J Wang, Y X Deng et al. Multi-domain compact modeling for GeSbTe-based memory and selector devices and simulation for large-scale 3-D cross-point memory arrays. 2016 IEEE International Electron Devices Meeting, 7.7.1(2016).

    [55] A Calderoni, M Ferro, D Ventrice et al. Physical modeling and control of switching statistics in PCM arrays. 2011 3rd IEEE Int Mem Work IMW, 1(2011).

    [56] S Yoo, H D Lee, S Lee et al. Electro-thermal model for thermal disturbance in cross-point phase-change memory. IEEE Trans Electron Devices, 67, 1454(2020).

    [57] D Ielmini, D Mantegazza, A L Lacaita. Voltage-controlled relaxation oscillations in phase-change memory devices. IEEE Electron Device Lett, 29, 568(2008).

    [58] M Nardone, V G Karpov, I V Karpov. Relaxation oscillations in chalcogenide phase change memory. J Appl Phys, 107, 054519(2010).

    [59] M Nardone, V G Karpov, D C S Jackson et al. A unified model of nucleation switching. Appl Phys Lett, 94, 103509(2009).

    [60] H F Hu, D Y Liu, X H Chen et al. A compact phase change memory model with dynamic state variables. IEEE Trans Electron Devices, 67, 133(2020).

    [61] P E Schmidt, R C Callarotti. Theoretical and experimental study of the operation of ovonic switches in the relaxation oscillation mode. I. The charging characteristic during the off state. J Appl Phys, 55, 3144(1984).

    [62] M Anbarasu, M Wimmer, G Bruns et al. Nanosecond threshold switching of GeTe6 cells and their potential as selector devices. Appl Phys Lett, 100, 143505(2012).

    [63] G W Burr, R S Shenoy, K Virwani et al. Access devices for 3D crosspoint memory. J Vac Sci Technol B, 32, 040802(2014).

    [64] M J Lee, D Lee, H Kim et al. Highly-scalable threshold switching select device based on chaclogenide glasses for 3D nanoscaled memory arrays. 2012 International Electron Devices Meeting, 2.6.1(2012).

    [65] K Ren, X Duan, Q Q Xiong et al. Constructing reliable PCM and OTS devices with an interfacial carbon layer. J Mater Sci: Mater Electron, 30, 20037(2019).

    [66] X H Chen, F L Ding, X Q Huang et al. A robust and efficient compact model for phase-change memory circuit simulations. IEEE Trans Electron Devices, 68, 4404(2021).

    [67] S R Nandakumar, M Le Gallo, I Boybat et al. A phase-change memory model for neuromorphic computing. J Appl Phys, 124, 152135(2018).

    [68] X H Chen, H F Hu, X Q Huang et al. A SPICE model of phase change memory for neuromorphic circuits. IEEE Access, 8, 95278(2020).

    [69] M Le Gallo, T Tuma, F Zipoli et al. Inherent stochasticity in phase-change memory devices. 2016 46th European Solid-State Device Research Conference, 373(2016).

    [70] I Boybat, M Le Gallo, S R Nandakumar et al. Neuromorphic computing with multi-memristive synapses. Nat Commun, 9, 2514(2018).

    [71] M Boniardi, D Ielmini. Physical origin of the resistance drift exponent in amorphous phase change materials. Appl Phys Lett, 98, 243506(2011).

    [72] M Boniardi, D Ielmini, S Lavizzari et al. Statistics of resistance drift due to structural relaxation in phase-change memory arrays. IEEE Trans Electron Devices, 57, 2690(2010).

    [73] U Russo, D Ielmini, A Redaelli et al. Intrinsic data retention in nanoscaled phase-change memories—part I: Monte Carlo model for crystallization and percolation. IEEE Trans Electron Devices, 53, 3032(2006).

    [74] K Kim, S J Ahn. Reliability investigations for manufacturable high density PRAM. 2005 IEEE International Reliability Physics Symposium, 157(2005).

    [75] B Gleixner, F Pellizzer, R Bez. Reliability characterization of phase change memory. 2009 10th Annual Non-Volatile Memory Technology Symposium, 7(2009).

    [76] T Y Yang, J Y Cho, Y J Park et al. Effects of dopings on the electric-field-induced atomic migration and void formation in Ge2Sb2Te5. 18th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits, 1(2011).

    [77] A Pirovano, A L Lacaita, A Benvenuti et al. Scaling analysis of phase-change memory technology. 2003 IEEE International Electron Devices Meeting, 29.6.1(2003).

    [78] A Pirovano, A L Lacaita, F Pellizzer et al. Low-field amorphous state resistance and threshold voltage drift in chalcogenide materials. IEEE Trans Electron Devices, 51, 714(2004).

    [79] W W Koelmans, A Sebastian, V P Jonnalagadda et al. Projected phase-change memory devices. Nat Commun, 6, 1(2015).

    [80] I Giannopoulos, A Sebastian, M Le Gallo et al. 8-bit precision in-memory multiplication with projected phase-change memory. 2018 IEEE International Electron Devices Meeting, 27.7.1(2018).

    [81] A Redaelli, D Ielmini, U Russo et al. Intrinsic data retention in nanoscaled phase-change memories—part II: Statistical analysis and prediction of failure time. IEEE Trans Electron Devices, 53, 3040(2006).

    Feilong Ding, Baokang Peng, Xi Li, Lining Zhang, Runsheng Wang, Zhitang Song, Ru Huang. A review of compact modeling for phase change memory[J]. Journal of Semiconductors, 2022, 43(2): 023101
    Download Citation