• Journal of Semiconductors
  • Vol. 43, Issue 2, 023101 (2022)
Feilong Ding1, Baokang Peng1, Xi Li2, Lining Zhang1, Runsheng Wang3, Zhitang Song2, and Ru Huang3
Author Affiliations
  • 1School of Electronic and Computer Engineering, Peking University, Shenzhen 518055, China
  • 2Shanghai Institute of Micro-System and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
  • 3Institute of Microelectronics, Peking University, Beijing 100871, China
  • show less
    DOI: 10.1088/1674-4926/43/2/023101 Cite this Article
    Feilong Ding, Baokang Peng, Xi Li, Lining Zhang, Runsheng Wang, Zhitang Song, Ru Huang. A review of compact modeling for phase change memory[J]. Journal of Semiconductors, 2022, 43(2): 023101 Copy Citation Text show less

    Abstract

    Phase change memory (PCM) attracts wide attention for the memory-centric computing and neuromorphic computing. For circuit and system designs, PCM compact models are mandatory and their status are reviewed in this work. Macro models and physics-based models have been proposed in different stages of the PCM technology developments. Compact modeling of PCM is indeed more complex than the transistor modeling due to their multi-physics nature including electrical, thermal and phase transition dynamics as well as their interactions. Realizations of the PCM operations including threshold switching, set and reset programming in these models are diverse, which also differs from the perspective of circuit simulations. For the purpose of efficient and reliable designs of the PCM technology, open issues and challenges of the compact modeling are also discussed.
    $ \Delta G = \frac{{16}}{3}\frac{{\pi {\gamma ^3}}}{{d{g^2}}} . $ (1)

    View in Article

    $ {P_{\rm n}} = \alpha \Delta t \, \exp \left[ { - \beta \left( {{E_{\rm{a}1}} + \Delta G} \right)} \right] , $ (2)

    View in Article

    $ {c_N} = r_0^N \; \exp \left[ { - \beta \left( {{E_{{\text{a}}1}} + \Delta G} \right)} \right] . $ (3)

    View in Article

    $ {v_{\rm g}} = f{a_0}\alpha \left[ {1 - \exp \left( { - \beta \left| {dg} \right|} \right)} \right]\exp \left( { - \beta {E_{\rm{a}2}}} \right), $ (4)

    View in Article

    $ {P_{\rm g}} = pa\Delta t\left[ {1 - \exp \left( { - \beta \left| {d{{g}}} \right|} \right)} \right]\exp \left( { - \beta {E_{\rm{a}2}}} \right), $ (5)

    View in Article

    $ {c_G} = r_0^G\left[ {1 - \exp ( - \beta \left| {dg} \right|)} \right]\exp \left( { - \beta {E_{\rm{a}2}}} \right), $ (6)

    View in Article

    $ X\left( t \right) = 1 - \exp \left[ { - {{(At)}^n}} \right] , $ (7)

    View in Article

    $ A\left( T \right) = w\,\exp \left( { - \frac{{{E_{\rm a}}}}{{kT}}} \right) , $ (8)

    View in Article

    $\begin{array}{l} {I_\alpha }\left( {{V_1},{V_{\rm{status}}}} \right) = \dfrac{1}{{{n_{\rm{status}}} {R_0}\left( {{V_{\rm{status}}}} \right) \cdot \exp \left[ {\dfrac{{{E_{\rm{a,status}}}}}{k}\left( {\dfrac{1}{T} - \dfrac{1}{{{T_{\rm{ref}}}}}} \right)} \right]}} \\ \qquad\qquad\qquad\times\left[ {\exp \left( {{n_{\rm{status}}} {V_1}} \right) - 1} \right] . \end{array}$ (9)

    View in Article

    $ {I_1} = {I_\alpha }\left( {{V_1},{C_x}} \right) + F\left( {{I_1};{I_{\rm{th}}}} \right) \cdot \left[ { - {I_\alpha }\left( {{V_1},{C_x}} \right) + F\left( {{V_1};{V_{\rm{hold}}}} \right) \cdot {I_{\rm{on}}}\left( {{V_1}} \right)} \right] . $ (10)

    View in Article

    $ I = - \frac{V}{{{R_{\rm{load}}}}} + \frac{{{V_{\rm{th}}}}}{{{R_{\rm{load}}}}} , $ (11)

    View in Article

    $ {C_x} = 1 - \exp \left( { - \frac{t}{\tau }} \right) . $ (12)

    View in Article

    $ {R_x} = {R_{0\rm{c}}} + \left( {{R_{0\rm{a}}} - {R_{0\rm{c}}}} \right) \left( {1 - {C_x}} \right), $ (13)

    View in Article

    $ \frac{{\rm{d}F}}{{\rm{d}t}} = - \frac{{F - \theta \left( {{I_{\rm{gst}}} - {I_{\rm{th}}}} \right)}}{{{\tau _f}}} , $ (14)

    View in Article

    $ {\left( {\frac{{\rm{d}{V_{\rm{a}}}}}{{\rm{d}t}}} \right)_{\rm{c}}} = - \left({P_{\rm{n}}}{V_{\rm{n}}}\frac{{{V_{\rm{a}}}}}{{{V_{\rm{m}}}}} + {S_{\rm{a}}}{v_{\rm{g}}} \right) . $ (15)

    View in Article

    $ {\left( {\frac{{\rm{d}{V_{\rm{a}}}}}{{\rm{d}t}}} \right)_{\rm{c}}} = - \frac{{{V_{\rm{a}}}}}{\tau } . $ (16)

    View in Article

    $ {\left( {\frac{{\rm{d}{V_{\rm{a}}}}}{{\rm{d}t}}} \right)_{\rm{a}}} = \frac{{{T_{\rm{a}}} - {T_{\rm{m}}}}}{{{R_{\rm{t}}}\Delta {h_{\rm{1}}}}} , $ (17)

    View in Article

    $ \frac{{\rm{d}{V_{\rm{a}}}}}{{\rm{d}t}} = {\left( {\frac{{\rm{d}{V_{\rm{a}}}}}{{\rm{d}t}}} \right)_{\rm{c}}}\theta \left( {{T_{\rm{m}}} - {T_{\rm{a}}}} \right) + {\left( {\frac{{\rm{d}{V_{\rm{a}}}}}{{\rm{d}t}}} \right)_{\rm{a}}}\theta \left( {{T_{\rm{a}}} - {T_{\rm{m}}}} \right) . $ (18)

    View in Article

    $ {\tau _{\rm{m}}}\frac{{\partial {F_{\rm{m}}}}}{{\partial t}} + {F_{\rm{m}}} = {\left[ {1 + \exp \left( {\frac{{{T_{\rm{m}}} - T}}{{{\sigma _{\rm{m}}}}}} \right)} \right]^{ - 1}} , $ (19)

    View in Article

    $ {\tau _{\rm c}}\frac{{\partial {F_{\rm c}}}}{{\partial t}} + {F_{\rm c}} = 1 - {F_{\rm m}} , $ (20)

    View in Article

    $ {F_{\rm a}} = 1 - {F_{\rm m}} - {F_{\rm c}} . $ (21)

    View in Article

    $ {\tau _{\rm{set}}}\frac{{\partial {F_{\rm c}}}}{{\partial t}} = {F_{\rm a}} b \, \exp \left( {1 - b {F_{\rm a}}} \right) , $ (22)

    View in Article

    $ {\tau _{\rm{set}}} = {\tau _{\rm{HT}}} + {\tau _{\rm{LT}}} = {\tau _{0\rm{HT}}}\exp \left( {\frac{{{E_{\rm{AHT}}}}}{{kT}}} \right) + {\tau _{0\rm{LT}}}\exp \left( {\frac{{{E_{\rm{ALT}}}}}{{kT}}} \right), $ (23)

    View in Article

    $ {I_{\rm{PF}}} = {A_{\rm{kPF}}} F \left( { - \frac{{{\Phi _{\rm{PF}}} - {\beta _{\rm{PF}}}\sqrt F }}{{kT}}} \right) , $ (24)

    View in Article

    $ {\Phi _{\rm{PF}}} = {E_{\rm{a}0}} - \frac{{{a_{\rm{va}}}{T^2}}}{{{b_{\rm{va}}} + T}} , $ (25)

    View in Article

    $ \frac{{\rm{d}\Omega_i}}{{\rm{d}t}} = \sum\limits_{i \ne j} {\sum\limits_{e,c \in P} {\left( {{c_{j \to i}}{\Omega _j} - {e_{i \to j}}{\Omega _i}} \right)} } , $ (26)

    View in Article

    $\begin{array}{l} I = 2eA \dfrac{{\Delta z}}{{{\tau _0}}}\left[ {n_{\rm{T}1}}\exp \left( { - \dfrac{{{E_{\rm c}} - {E_{\rm{T}1}}}}{{kT}}} \right) + \left( {{n_{\rm{T}2}} + {n_{\rm{T}2}}'} \right)\exp \left( { - \dfrac{{{E_{\rm c}} - {E_{\rm{T}2}}}}{{kT}}} \right) \right] \\ \qquad\times\, {\rm{sinh}} \left( {\dfrac{{dU}}{{kT}}} \right) , \end{array}$ (27)

    View in Article

    $ {H_{\rm{a,OFF}}} = \frac{{{E_{\rm{T}2}} - {E_{\rm{T}1}}}}{{kT}} , $ (28)

    View in Article

    $ {H_{\rm{a,ON}}} = {H_{\rm{gst,a}}} - {H_{\rm{a,OFF}}} , $ (29)

    View in Article

    $ V = {F_{\rm{OFF}}} {H_{\rm{a,OFF}}} + {F_{\rm{ON}}} {H_{\rm{a,ON}}} , $ (30)

    View in Article

    $ {\mu _{\Delta {G_N}}} = {m_1}{G_{N - 1}}\left( {{t_0}} \right) + \left( {{c_1} + {A_1}{P_{\rm{mem}}}} \right) , $ (31)

    View in Article

    $ {\sigma _{\Delta {G_N}}} = {m_2}{G_{N - 1}}\left( {{t_0}} \right) + \left( {{c_2} + {A_2}{P_{\rm{mem}}}} \right) , $ (32)

    View in Article

    $ \Delta {G_N} = {\mu _{\Delta {G_N}}} + {\sigma _{\Delta {G_N}}}\chi , $ (33)

    View in Article

    $ {G_N}\left( {{t_0}} \right) = {G_{N - 1}}\left( {{t_0}} \right) + \Delta {G_N} . $ (34)

    View in Article

    $ R\left( t \right) = {R_1}{\left( {\frac{t}{{{t_1}}}} \right)^v} , $ (35)

    View in Article

    Feilong Ding, Baokang Peng, Xi Li, Lining Zhang, Runsheng Wang, Zhitang Song, Ru Huang. A review of compact modeling for phase change memory[J]. Journal of Semiconductors, 2022, 43(2): 023101
    Download Citation