• Opto-Electronic Advances
  • Vol. 4, Issue 3, 200045-1 (2021)
Qianbo Lu1、2、*, Yinan Wang3, Xiaoxu Wang3, Yuan Yao4, Xuewen Wang1、2, and Wei Huang1、2
Author Affiliations
  • 1Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an 710072, China
  • 2MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi’an 710072, China
  • 3The Key Laboratory of Information Fusion Technology, Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
  • 4Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China.
  • show less
    DOI: 10.29026/oea.2021.200045 Cite this Article
    Qianbo Lu, Yinan Wang, Xiaoxu Wang, Yuan Yao, Xuewen Wang, Wei Huang. Review of micromachined optical accelerometers: from mg to sub-μg[J]. Opto-Electronic Advances, 2021, 4(3): 200045-1 Copy Citation Text show less
    References

    [1]

    [2] Z Yazdi, F Ayazi, K Najafi. Micromachined inertial sensors. Proc IEEE, 86, 1640(1998).

    [3] Advanced Microsystems for Automotive Applications 2005 (Springer, Berlin, Heidelberg, 2005).

    [4] Costa da, HFT Lima, NJ Alberto, H Rodrigues, PMF Pinto, et al. Optical fiber accelerometer system for structural dynamic monitoring. IEEE Sens J, 9, 1347-1354(2009).

    [5] Opt Express 17, 20651–20660 (2009). DOI: 10.1117/12.851427

    [6] Q Wang, HF Liu, LC Tu. High-precision MEMS inertial sensors for geophysical applications. Navig Control, 17, 1(2018).

    [7] AB Tveten, A Dandridge, CM Davis, TG Giallorenzi. Fibre optic accelerometer. Electron Lett, 16, 854-856(1980).

    [8] E Abbaspour-Sani, RS Huang, CY Kwok. A novel optical accelerometer. IEEE Electron Device Lett, 16, 166-168(1995).

    [9] Proceedings of 2018 IEEE Micro Electro Mechanical Systems 952–955 (IEEE, 2018); http://doi.org/10.1109/MEMSYS.2018.8346715.

    [10] Y Qin, A Brockett, Y Ma, A Razali, J Zhao, et al. Micro-manufacturing: research, technology outcomes and development issues. Int J Adv Manuf Technol, 47, 821-837(2010).

    [11] Handbook of Silicon Based MEMS Materials and Technologies 3rd ed (Elsevier, Amsterdam, 2020).

    [12] BH Lu, HB Lan, HZ Liu. Additive manufacturing frontier: 3D printing electronics. Opto-Electron Adv, 1, 170004(2018).

    [13] YA Huang, H Wu, L Xiao, YQ Duan, H Zhu, et al. Assembly and applications of 3D conformal electronics on curvilinear surfaces. Mater Horiz, 6, 642-683(2019).

    [14] DV Dao, K Nakamura, TT Bui, S Sugiyama. Micro/nano-mechanical sensors and actuators based on SOI-MEMS technology. Adv Nat Sci Nanosci Nanotechnol, 1, 013001(2010).

    [15] GY Zhou, FS Chau. Grating-assisted optical microprobing of in-plane and out-of-plane displacements of microelectromechanical devices. J Microelectromech Syst, 15, 388-395(2006).

    [16] SG Bramsiepe, D Loomes, RP Middlemiss, DJ Paul, GD Hammond. A high stability optical shadow sensor with applications for precision accelerometers. IEEE Sens J, 18, 4108-4116(2018).

    [17] JA Plaza, A Llobera, C Dominguez, J Esteve, I Salinas, et al. BESOI-based integrated optical silicon accelerometer. J Microelectromech Syst, 13, 355-364(2004).

    [18] G Schröpfer, W Elflein, Labachelerie de, H Porte, S Ballandras. Lateral optical accelerometer micromachined in (100) silicon with remote readout based on coherence modulation. Sens Actuat A-Phys, 68, 344-349(1998).

    [19] VJ Cadarso, A Llobera, G Villanueva, V Seidemann, S Büttgenbach, et al. Polymer microoptoelectromechanical systems: accelerometers and variable optical attenuators. Sens Actuat A-Phys, 145, 147-153(2008).

    [20] A Llobera, V Seidemann, JA Plaza, VJ Cadarso, S Buttgenbach. Integrated polymer optical accelerometer. IEEE Photonics Technol Lett, 17, 1262-1264(2005).

    [21] A Llobera, V Seidemann, JA Plaza, VJ Cadarso, S Buttgenbach. SU-8 optical accelerometers. J Microelectromech Syst, 16, 111-121(2007).

    [22] Proceedings of 2018 IEEE Micro Electro Mechanical Systems (MEMS) 113–116 (IEEE, 2018); http://doi.org/10.1109/MEMSYS.2018.8346496.

    [23] RP Middlemiss, A Samarelli, DJ Paul, J Hough, S Rowan, et al. Measurement of the Earth tides with a MEMS gravimeter. Nature, 531, 614-617(2016).

    [24] SH Tang, HF Liu, ST Yan, XC Xu, WJ Wu, et al. A high-sensitivity MEMS gravimeter with a large dynamic range. Microsyst Nanoeng, 5, 45(2019).

    [25] A Mustafazade, M Pandit, C Zhao, G Sobreviela, ZJ Du, et al. A vibrating beam MEMS accelerometer for gravity and seismic measurements. Sci Rep, 10, 10415(2020).

    [26] YX Duan, XY Wei, HR Wang, MH Zhao, ZM Ren, et al. Design and numerical performance analysis of a microgravity accelerometer with quasi-zero stiffness. Smart Mater Struct, 29, 075018(2020).

    [27] Proceedings of the 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS) 2131–2134 (IEEE, 2017); http://doi.org/10.1109/TRANSDUCERS.2017.7994496.

    [28] HC Zhang, XY Wei, YY Ding, ZD Jiang, J Ren. A low noise capacitive MEMS accelerometer with anti-spring structure. Sens Actuat A-Phys, 296, 79-86(2019).

    [29] EB Cooper, ER Post, S Griffith, J Levitan, SR Manalis, et al. High-resolution micromachined interferometric accelerometer. Appl Phys Lett, 76, 3316-3318(2000).

    [30] NC Loh, MA Schmidt, SR Manalis. Sub-10 cm3 interferometric accelerometer with nano-g resolution. J Microelectromech Syst, 11, 182-187(2002).

    [31] NA Hall, M Okandan, R Littrell, DK Serkland, GA Keeler, et al. Micromachined accelerometers with optical interferometric read-out and integrated electrostatic actuation. J Microelectromech Syst, 17, 37-44(2008).

    [32] RP Williams, SK Hord, NA Hall. Optically read displacement detection using phase-modulated diffraction gratings with reduced zeroth-order reflections. Appl Phys Lett, 110, 151104(2017).

    [33] X Wang, LS Feng, BY Yao, XY Ren. Sensitivity improvement of micro-grating accelerometer based on differential detection method. Appl Opt, 52, 4091-4096(2013).

    [34] LH Chen, Q Lin, S Li, X Wu. Optical accelerometer based on high-order diffraction beam interference. Appl Opt, 49, 2658-2664(2010).

    [35] Y Zhang, S Gao, H Xiong, LS Feng. Optical sensitivity enhancement in grating based micromechanical accelerometer by reducing non-parallelism error. Opt Express, 27, 6565-6579(2019).

    [36] TH Zhang, HL Liu, LS Feng, X Wang, Y Zhang. Noise suppression of a micro-grating accelerometer based on the dual modulation method. Appl Opt, 56, 10003-10008(2017).

    [37] SS Zhao, CL Hou, J Bai, GG Yang, F Tian. Nanometer-scale displacement sensor based on phase-sensitive diffraction grating. Appl Opt, 50, 1413-1416(2011).

    [38] SS Zhao, J Zhang, CL Hou, J Bai, GG Yang. Optical accelerometer based on grating interferometer with phase modulation technique. Appl Opt, 51, 7005-7010(2012).

    [39] QB Lu, C Wang, J Bai, KW Wang, WX Lian, et al. Subnanometer resolution displacement sensor based on a grating interferometric cavity with intensity compensation and phase modulation. Appl Opt, 54, 4188-4196(2015).

    [40] H Li, SK Li, KK Deng, S Gao, LS Feng. Analysis and design of closed-loop detection technique for micro-grating accelerometer. J Lightwave Technol, 36, 5738-5745(2018).

    [41] S Gao, Z Zhou, Y Zhang, KK Deng, LS Feng. High-resolution micro-grating accelerometer based on a gram-scale proof mass. Opt. Express, 27, 34298-34311(2019).

    [42] H Li, KK Deng, S Gao, LS Feng. Design of closed-loop parameters with high dynamic performance for micro-grating accelerometer. IEEE Access, 7, 151939-151947(2019).

    [43] Y Zhang, LS Feng, X Wang, YJ Wang. Linearity enhancement of scale factor in an optical interrogated micromechanical accelerometer. Appl Opt, 55, 6115-6120(2016).

    [44] QB Lu, C Wang, J Bai, KW Wang, SQ Lou, et al. Minimizing cross-axis sensitivity in grating-based optomechanical accelerometers. Opt Express, 24, 9094-9111(2016).

    [45] QB Lu, J Bai, KW Wang, SL He. Design, optimization, and realization of a high-performance MOEMS accelerometer from a double-device-layer SOI wafer. J Microelectromech Syst, 26, 859-869(2017).

    [46] NA Hall, M Okandan, FL Degertekin. Surface and bulk-silicon-micromachined optical displacement sensor fabricated with the SwIFT-LiteTM process. J Microelectromech Syst, 15, 770-776(2006).

    [47] TA Berkoff, AD Kersey. Experimental demonstration of a fiber Bragg grating accelerometer. IEEE Photonics Technol Lett, 8, 1677-1679(1996).

    [48] N Linze, P Tihon, O Verlinden, P Mégret, M Wuilpart. Development of a multi-point polarization-based vibration sensor. Opti Express, 21, 5606-5624(2013).

    [49] TL Li, CY Shi, HL Ren. A novel fiber Bragg grating displacement sensor with a sub-micrometer resolution. IEEE Photonics Technol Lett, 29, 1199-1202(2017).

    [50] A Mita, I Yokoi. Fiber Bragg grating accelerometer for buildings and civil infrastructures. Proc SPIE, 4330, 479-486(2001).

    [51] YY Weng, XG Qiao, T Guo, ML Hu, ZY Feng, et al. A robust and compact fiber Bragg grating vibration sensor for seismic measurement. IEEE Sens J, 12, 800-804(2012).

    [52] P Munendhar, SK Khijwania. Two dimensional fiber Bragg grating based vibration sensor for structural health monitoring. AIP Conference Proceedings, 1536, 1324-1326(2013).

    [53] BJ Peng, Y Zhao, Y Zhao, J Yang. Tilt sensor with FBG technology and matched FBG demodulating method. IEEE Sens J, 6, 63-66(2006).

    [54] BO Guan, HY Tam, SY Liu. Temperature-independent fiber Bragg grating tilt sensor. IEEE Photonics Technol Lett, 16, 224-226(2004).

    [55] Proceedings of 2009 Asia Communications and Photonics conference and Exhibition (ACP) 1–5 (IEEE, 2009). DOI: 10.1117/12.851427

    [56] SL He, XY Dong, K Ni, YX Jin, C Chan, et al. Temperature-insensitive 2D tilt sensor with three fiber Bragg gratings. Meas Sci Technol, 21, 025203(2010).

    [57] XY Dong, C Zhan, K Hu, P Shum, CC Chan. Temperature-insensitive tilt sensor with strain-chirped fiber Bragg gratings. IEEE Photonics Technol Lett, 17, 2394-2396(2005).

    [58] P Ferdinand. Optical fiber Bragg grating inclinometry for smart civil engineering and public works. Proc SPIE, 41855, 41855O(2000).

    [59] R Aneesh, M Maharana, P Munendhar, HY Tam, SK Khijwania. Simple temperature insensitive fiber Bragg grating based tilt sensor with enhanced tunability. Appl Opt, 50, E172-E176(2011).

    [60] HL Bao, XY Dong, LY Shao, CL Zhao, SZ Jin. Temperature-insensitive 2-D tilt sensor by incorporating fiber Bragg gratings with a hybrid pendulum. Opt Commun, 283, 5021-5024(2010).

    [61] CS Fernandes, MTMR Giraldi, Sousa de, JCWA Costa, C Gouveia, et al. Curvature and vibration sensing based on core diameter mismatch structures. IEEE Trans Instrum Meas, 65, 2120-2128(2016).

    [62] K Li, THT Chan, MH Yau, T Nguyen, DP Thambiratnam, et al. Very sensitive fiber Bragg grating accelerometer using transverse forces with an easy over-range protection and low cross axial sensitivity. Appl Opt, 52, 6401-6410(2013).

    [63] TL Li, CY Shi, YG Tan, RY Li, ZD Zhou, et al. A diaphragm type fiber Bragg grating vibration sensor based on transverse property of optical fiber with temperature compensation. IEEE Sens J, 17, 1021-1029(2017).

    [64] T Erdogan, JE Sipe. Tilted fiber phase gratings. J Opt Soc Am A, 13, 296-313(1996).

    [65] KS Lee, T Erdogan. Fiber mode coupling in transmissive and reflective tilted fiber gratings. Appl Opt, 39, 1394-1404(2000).

    [66] SC Kang, SY Kim, SB Lee, SW Kwon, SS Choi, et al. Temperature-independent strain sensor system using a tilted fiber Bragg grating demodulator. IEEE Photonics Technol Lett, 10, 1461-1463(1998).

    [67] G Laffont, P Ferdinand, Technology. Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry. Meas Sci Technol, 12, 765-770(2001).

    [68] YY Shevchenko, J Albert. Plasmon resonances in gold-coated tilted fiber Bragg gratings. Opt Lett, 32, 211-213(2007).

    [69] E Chehura, SW James, RP Tatam. Temperature and strain discrimination using a single tilted fibre Bragg grating. Opt Commun, 275, 344-347(2007).

    [70] B Zhou, AP Zhang, SL He, BB Gu. Cladding-mode-recoupling-based tilted fiber Bragg grating sensor with a core-diameter-mismatched fiber section. IEEE Photonics J, 2, 152-157(2010).

    [71] R Helan, Jr Urban, B Mikel, FU Sr. Preparation and measurement of TFBG based vibration sensor. Proc SPIE, 92864, 92864D(2014).

    [72] YH Huang, TA Guo, C Lu, HY Tam. Vcsel-based tilted fiber grating vibration sensing system. IEEE Photonics Technol Lett, 22, 1235-1237(2010).

    [73] LY Shao, LY Xiong, CK Chen, A Laronche, J Albert. Directional bend sensor based on re-grown tilted fiber Bragg grating. J Lightwave Technol, 28, 2681-2687(2010).

    [74] LY Shao, J Albert. Compact fiber-optic vector inclinometer. Opt Lett, 35, 1034-1036(2010).

    [75] N Basumallick, I Chatterjee, P Biswas, K Dasgupta, S Bandyopadhyay. Fiber Bragg grating accelerometer with enhanced sensitivity. Sens Actuat A-Phys, 173, 108-115(2012).

    [76] N Basumallick, P Biswas, K Dasgupta, S Bandyopadhyay. Design optimization of fiber Bragg grating accelerometer for maximum sensitivity. Sens Actuat A-Phys, 194, 31-39(2013).

    [77] MM Khan, N Panwar, R Dhawan. Modified cantilever beam shaped FBG based accelerometer with self temperature compensation. Sens Actuat A-Phys, 205, 79-85(2014).

    [78] QP Liu, XG Qiao, ZA Jia, HW Fu, H Gao, et al. Large frequency range and high sensitivity fiber Bragg grating accelerometer based on double diaphragms. IEEE Sens J, 14, 1499-1504(2014).

    [79] QP Liu, XG Qiao, JL Zhao, ZA Jia, H Gao, et al. Novel fiber Bragg grating accelerometer based on diaphragm. IEEE Sens J, 12, 3000-3004(2012).

    [80] YN Zhu, P Shum, C Lu, BM Lacquet, PL Swart, et al. Temperature-insensitive fiber Bragg grating accelerometer. IEEE Photonics Technol Lett, 15, 1437-1439(2003).

    [81] WJ Zhou, XY Dong, CY Shen, CL Zhao, CC Chan, et al. Temperature-independent vibration sensor with a fiber bragg grating. Microw Opt Technol Lett, 52, 2282-2285(2010).

    [82] MD Todd, GA Johnson, BA Althouse, ST Vohra. Flexural beam-based fiber Bragg grating accelerometers. IEEE Photonics Technol Lett, 10, 1605-1607(1998).

    [83] N Gutiérrez, P Galvín, F Lasagni. Low weight additive manufacturing FBG accelerometer: design, characterization and testing. Measurement, 117, 295-303(2018).

    [84] K Li, GY Liu, YQ Li, J Yang, WL Ma. Ultra-small fiber bragg grating accelerometer. Appl Sci, 9, 2707(2019).

    [85] L Wei, DZ Jiang, LL Yu, HC Li, Z Liu. A novel miniaturized fiber bragg grating vibration sensor. IEEE Sens J, 19, 11932-11940(2019).

    [86] AS Gerges, TP Newson, DA Jackson. Practical fiber-optic-based submicro-g accelerometer free from source and environmental perturbations. Appl Sci, 14, 1155-1157(1989).

    [87] M Stephens. A sensitive interferometric accelerometer. Rev Sci Instrum, 64, 2612-2614(1993).

    [88] DH Wang, PG Jia. Fiber optic extrinsic Fabry-Perot accelerometer using laser emission frequency modulated phase generated carrier demodulation scheme. Opt Eng, 52, 055004(2013).

    [89] AS Gerges, TP Newson, JDC Jones, DA Jackson. High-sensitivity fiber-optic accelerometer. Opt Lett, 14, 251-253(1989).

    [90] QA Lin, LH Chen, S Li, X Wu. A high-resolution fiber optic accelerometer based on intracavity phase-generated carrier (PGC) modulation. Meas Sci Technology, 22, 015303(2011).

    [91] B Yu, AB Wang, GR Pickrell. Analysis of fiber Fabry-Pérot interferometric sensors using low-coherence light sources. J Lightwave Technol, 24, 1758-1767(2006).

    [92] JJ Guo, CX Yang. Non-contact fiber vibration sensor based on intracavity modulation of an extrinsic Fabry-Perot interferometer. IEEE Sens J, 15, 7229-7233(2015).

    [93] B Liu, J Lin, H Liu, Y Ma, L Yan, et al. Diaphragm based long cavity Fabry-Perot fiber acoustic sensor using phase generated carrier. Opt Commun, 382, 514-518(2017).

    [94] PG Jia, DH Wang. Temperature-compensated fiber optic Fabry-Perot accelerometer based on the feedback control of the Fabry-Perot cavity length. Chin Opt Lett, 11, 8-12(2013).

    [95] XD Wang, BQ Li, ZX Xiao, SH Lee, H Roman, et al. An ultra-sensitive optical MEMS sensor for partial discharge detection. J Micromech Microeng, 15, 521-527(2005).

    [96] E Davies, DS George, MC Gower, AS Holmes. MEMS Fabry-Pérot optical accelerometer employing mechanical amplification via a V-beam structure. Sens Actuat A-Phys, 215, 22-29(2014).

    [97] ZH Zhao, ZH Yu, K Chen, QX Yu. A fiber-optic fabry-perot accelerometer based on high-speed white light interferometry demodulation. J Lightwave Technol, 36, 1562-1567(2018).

    [98] TJ Kippenberg, KJ Vahala. Cavity optomechanics: back-action at the mesoscale. Science, 321, 1172-1176(2008).

    [99] M Aspelmeyer, TJ Kippenberg, F Marquardt. Cavity optomechanics. Rev Mod Phys, 86, 1391-1452(2014).

    [100] Quantum Optomechanics. (CRC Press, Boca Raton, 2015).

    [101] P Meystre. A short walk through quantum optomechanics. Ann Phys, 525, 215-233(2013).

    [102] SCIENCE CHINA Physics, Mechanics & Astronomy 58, 1–6 (2015). DOI: 10.1007/s11433-015-5657-8

    [103] FG Cervantes, L Kumanchik, J Pratt, JM Taylor. High sensitivity optomechanical reference accelerometer over 10 kHz. Appl Phys Lett, 104, 221111(2014).

    [104] Proceedings of 2016 IEEE International Symposium on Inertial Sensors and Systems 105–108 (IEEE, 2016); http://doi.org/10.1109/ISISS.2016.7435556.

    [105] O Gerberding, FG Cervantes, J Melcher, JR Pratt, JM Taylor. Optomechanical reference accelerometer. Metrologia, 52, 654-665(2015).

    [106] J Li, JN Sun, MM Miliar, FZ Dong, RRJ Maier, et al. Two-dimensional optical fibre cantilever accelerometer. Proc SPIE, 96341, 96341E(2015).

    [107] B Liu, Z Zhong, J Lin, X Wang, L Liu, et al. Extrinsic Fabry-Perot cantilever accelerometer based on micromachined 45° angled fiber. J Lightwave Technol, 36, 2196-2203(2018).

    [108] J Han, WT Zhang, ZG Wang, BC Sun, BH Xu, et al. Fiber optical accelerometer based on 45 degrees Fabry-Perot cavity. Proc SPIE, 9274, 927418(2014).

    [109] N Zeng, CZ Shi, M Zhang, LW Wang, YB Liao, et al. A 3-component fiber-optic accelerometer for well logging. Opt Commun, 234, 153-162(2004).

    [110] Proceedings of the 15th Optical Fiber Sensors Conference Technical Digest. OFS 2002(Cat. No.02EX533) 95–98 (IEEE, 2002); http://doi.org/10.1109/OFS.2002.1000510.

    [111] R Amarasinghe, DV Dao, T Toriyama, S Sugiyama. Design and fabrication of a miniaturized six-degree-of-freedom piezoresistive accelerometer. J Micromech Microeng, 15, 1745-1753(2005).

    [112] R Amarasinghe, DV Dao, T Toriyama, S Sugiyama. Development of miniaturized 6-axis accelerometer utilizing piezoresistive sensing elements. Sens Actuat A-Phys, 134, 310-320(2007).

    [113] JS Sirkis, DD Brennan, MA Putman, TA Berkoff, AD Kersey, et al. In-line fiber etalon for strain measurement. Opt Lett, 18, 1973-1975(1993).

    [114] WL Liu, WZ Li, JP Yao. Real-time interrogation of a linearly chirped fiber Bragg grating sensor for simultaneous measurement of strain and temperature. IEEE Photonics Technol Lett, 23, 1340-1342(2011).

    [115] J Echevarria, A Quintela, C Jauregui, JM Lopez-Higuera. Uniform fiber Bragg grating first-and second-order diffraction wavelength experimental characterization for strain-temperature discrimination. IEEE Photonics Technol Lett, 13, 696-698(2001).

    [116] LY Shao, XY Dong, AP Zhang, HY Tam, SL He. High-resolution strain and temperature sensor based on distributed Bragg reflector fiber laser. IEEE Photonics Technol Lett, 19, 1598-1600(2007).

    [117] QZ Rong, H Sun, XG Qiao, J Zhang, ML Hu, et al. A miniature fiber-optic temperature sensor based on a Fabry–Perot interferometer. J Opt, 14, 045002(2012).

    [118] A Fender, WN MacPherson, RRJ Maier, JS Barton, DS George, et al. Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings. IEEE Sens J, 8, 1292-1298(2008).

    [119] CL Zhao, X Yang, M Demokan, W Jin. Simultaneous temperature and refractive index measurements using a 3°slanted multimode fiber Bragg grating. J. Lightwave Technol, 24, 879-883(2006).

    [120] Q Zhang, T Zhu, YS Hou, KS Chiang. All-fiber vibration sensor based on a Fabry–Perot interferometer and a microstructure beam. J Opt Soc Am B, 30, 1211-1215(2013).

    [121] G Gagliardi, M Salza, P Ferraro, Natale De, Maio Di, et al. Design and test of a laser-based optical-fiber Bragg-grating accelerometer for seismic applications. Meas Sci Technol, 19, 085306(2008).

    [122] H Tsuda. Fiber Bragg grating vibration-sensing system, insensitive to Bragg wavelength and employing fiber ring laser. Opt Lett, 35, 2349-2351(2010).

    [123] WY Ma, Y Jiang, H Zhang, LC Zhang, J Hu, et al. Miniature on-fiber extrinsic Fabry-Perot interferometric vibration sensors based on micro-cantilever beam. Nanotechnol Rev, 8, 293-298(2019).

    [124] YG Lee, DH Kim, CG Kim. Performance of a single reflective grating-based fiber optic accelerometer. Meas Sci Technol, 23, 045101(2012).

    [125] MS Ferreira, L Coelho, K Schuster, J Kobelke, JL Santos, et al. Fabry–Perot cavity based on a diaphragm-free hollow-core silica tube. Opt Lett, 36, 4029-4031(2011).

    [126] GZ Xiao, A Adnet, ZY Zhang, FG Sun, CP Grover. Monitoring changes in the refractive index of gases by means of a fiber optic Fabry-Perot interferometer sensor. Sens Actuat A-Phys, 118, 177-182(2005).

    [127] R Amarasinghe, DV Dao, T Toriyama, S Sugiyama. Simulation, fabrication and characterization of a three-axis piezoresistive accelerometer. Smart Mater Struct, 15, 1691-1699(2006).

    [128] YJ Rao, PJ Henderson, DA Jackson, L Zhang, I Bennion. Simultaneous strain, temperature and vibration measurement using a multiplexed in-fibre-Bragg-grating/fibre-Fabry-Perot sensor system. Electron Lett, 33, 2063-2064(1997).

    [129] YL Yu, H Tam, W Chung, MS Demokan. Fiber Bragg grating sensor for simultaneous measurement of displacement and temperature. Opt Lett, 25, 1141-1143(2000).

    [130] PG Jia, DH Wang, G Yuan, XY Jiang. An active temperature compensated fiber-optic Fabry-Perot accelerometer system for simultaneous measurement of vibration and temperature. IEEE Sens J, 13, 2334-2340(2013).

    [131] JM Corres, J Bravo, FJ Arregui, IR Matias. Vibration monitoring in electrical engines using an in-line fiber etalon. Sens Actuat A-Phys, 132, 506-515(2006).

    [132] T Ke, T Zhu, YJ Rao, M Deng. Accelerometer based on all-fiber Fabry-Pérot interferometer formed by hollow-core photonic crystal fiber. Microw Opt Technol Lett, 52, 2531-2535(2010).

    [133] ZG Zang, WX Yang. Theoretical and experimental investigation of all-optical switching based on cascaded LPFGs separated by an erbium-doped fiber. J Appl Phys, 109, 103106(2011).

    [134] ZJ Zang. Numerical analysis of optical bistability based on fiber Bragg grating cavity containing a high nonlinearity doped-fiber. Opt Commun, 285, 521-526(2012).

    [135] ZG Zang, YJ Zhang. Low-switching power (< 45 mW) optical bistability based on optical nonlinearity of ytterbium-doped fiber with a fiber Bragg grating pair. J Mod Opt, 59, 161-165(2012).

    [136] JC Xu, XW Wang, KL Cooper, AB Wang. Miniature all-silica fiber optic pressure and acoustic sensors. Opt Lett, 30, 3269-3271(2005).

    [137] DH Wang, SJ Wang, PG Jia. In-line silica capillary tube all-silica fiber-optic Fabry–Perot interferometric sensor for detecting high intensity focused ultrasound fields. Opt Lett, 37, 2046-2048(2012).

    [138] Proceedings of the 24th International Conference on Microelectronics 231–234 (IEEE, 2004); http://doi.org/10.1109/ICMEL.2004.1314602.

    [139] K Huang, M Yu, L Cheng, J Liu, LQ Cao. A proposal for an optical MEMS accelerometer with high sensitivity based on wavelength modulation system. J Lightwave Technol, 37, 5474-5478(2019).

    [140] K Huang, LQ Cao, PC Zhai, PY Liu, L Cheng, et al. High sensitivity sensing system theoretical research base on waveguide-nano DBRs one dimensional photonic crystal microstructure. Opt Commun, 470, 125392(2020).

    [141] A Sheikhaleh, K Abedi, K Jafari. An Optical MEMS Accelerometer based on a two-dimensional photonic crystal add-drop filter. J Lightwave Technol, 35, 3029-3034(2017).

    [142] A Sheikhaleh, K Abedi, K Jafari. A proposal for an optical mems accelerometer relied on wavelength modulation with one dimensional photonic crystal. J Lightwave Technol, 34, 5244-5249(2016).

    [143] S Olyaee, M Azizi. Micro-displacement sensor based on high sensitivity photonic crystal. Photonic Sens, 4, 220-224(2014).

    [144] RH Ritchie, AL Marusak. Surface plasmon dispersion relation for an electron gas. Surf Sci, 4, 234-240(1966).

    [145] TW Ebbesen, HJ Lezec, HF Ghaemi, T Thio, PA Wolff. Extraordinary optical transmission through sub-wavelength hole arrays. Nature, 391, 667-669(1998).

    [146] A Nemati, Q Wang, MH Hong, JH Teng. Tunable and reconfigurable metasurfaces and metadevices. Opto-Electron Adv, 1, 180009(2018).

    [147] DW Carr, JP Sullivan, TA Friedmann. Laterally deformable nanomechanical zeroth-order gratings: anomalous diffraction studied by rigorous coupled-wave analysis. Opt Lett, 28, 1636-1638(2003).

    [148] BEN Keeler, GR Bogart, DW Carr. Laterally deformable optical NEMS grating transducers for inertial sensing applications. Proc SPIE, 5592, 306-312(2005).

    [149] U Krishnamoorthy, III Olsson, GR Bogart, MS Baker, DW Carr, et al. In-plane MEMS-based nano-g accelerometer with sub-wavelength optical resonant sensor. Sens Actuat A-Phys, 145-146, 283-290(2008).

    [150] AG Krause, M Winger, TD Blasius, Q Lin, O Painter. A high-resolution microchip optomechanical accelerometer. Nat Photonics, 6, 768-772(2012).

    [151] M Eichenfield, R Camacho, J Chan, KJ Vahala, O Painter. A picogram- and nanometre-scale photonic-crystal optomechanical cavity. Nature, 459, 550-555(2009).

    [152] Q Lin, J Rosenberg, XS Jiang, KJ Vahala, O Painter. Mechanical oscillation and cooling actuated by the optical gradient force. Phys Rev Lett, 103, 103601(2009).

    [153] AH Safavi-Naeini, S Gröblacher, JT Hill, J Chan, M Aspelmeyer, et al. Squeezed light from a silicon micromechanical resonator. Nature, 500, 185-189(2013).

    [154] PH Kim, BD Hauer, C Doolin, F Souris, JP Davis. Approaching the standard quantum limit of mechanical torque sensing. Nat Commun, 7, 13165(2016).

    [155] Z Zobenica, der van, M Petruzzella, F Pagliano, R Leijssen, et al. Integrated nano-opto-electro-mechanical sensor for spectrometry and nanometrology. Nat Commun, 8, 2216(2017).

    [156] YJ Huang, Flores Flor, Y Li, WT Wang, D Wang, et al. A chip-scale oscillation-mode optomechanical inertial sensor near the thermodynamical limits. Laser Photonics Rev, 14, 1800329(2020).

    [157] AAA Rogers, S Kedia, S Samson, S Bhansali. Verification of evanescent coupling from subwavelength grating pairs. Appl Phys B, 105, 833-837(2011).

    [158] BY Yao, LS Feng, X Wang, MH Liu, Z Zhou, et al. Design of out-of-plane MOEMS accelerometer with subwavelength gratings. IEEE Photonics Technol Lett, 26, 1027-1030(2014).

    [159] QB Lu, J Bai, KW Wang, PW Chen, WD Fang, et al. Single Chip-based nano-optomechanical accelerometer based on subwavelength grating pair and rotated serpentine springs. Sensors, 18, 2036(2018).

    [160] MJ Snadden, JM McGuirk, P Bouyer, KG Haritos, MA Kasevich. Measurement of the Earth's gravity gradient with an atom interferometer-based gravity gradiometer. Phys Rev Lett, 81, 971-974(1998).

    [161] A Peters, KY Chung, S Chu. High-precision gravity measurements using atom interferometry. Metrologia, 38, 25-61(2001).

    [162] JM McGuirk, GT Foster, JB Fixler, MJ Snadden, MA Kasevich. Sensitive absolute-gravity gradiometry using atom interferometry. Phys Rev A, 65, 033608(2002).

    [163] T Kovachy, P Asenbaum, C Overstreet, CA Donnelly, SM Dickerson, et al. Quantum superposition at the half-metre scale. Nature, 528, 530-533(2015).

    [164] F Armata, L Latmiral, ADK Plato, MS Kim. Quantum limits to gravity estimation with optomechanics. Phys Rev A, 96, 043824(2017).

    [165] S Qvarfort, A Serafini, PF Barker, S Bose. Gravimetry through non-linear optomechanics. Nat Commun, 9, 3690(2018).

    [166] A Arvanitaki, AA Geraci. Detecting high-frequency gravitational waves with optically levitated sensors. Phys Rev Lett, 110, 071105(2013).

    [167] K Gietka, F Mivehvar, H Ritsch. Supersolid-based gravimeter in a ring cavity. Phys Rev Lett, 122, 190801(2019).

    [168] TP Purdy, RW Peterson, CA Regal. Observation of radiation pressure shot noise on a macroscopic object. Science, 339, 801-804(2013).

    [169] S Abend, M Gebbe, M Gersemann, H Ahlers, H Müntinga, et al. Atom-chip fountain gravimeter. Phys Rev Lett, 117, 203003(2016).

    [170] P Cheiney, L Fouché, S Templier, F Napolitano, B Battelier, et al. Navigation-compatible hybrid quantum accelerometer using a kalman filter. Phys Rev Appl, 10, 034030(2018).

    [171] M Metcalfe. Applications of cavity optomechanics. Appl Phys Rev, 1, 031105(2014).

    Qianbo Lu, Yinan Wang, Xiaoxu Wang, Yuan Yao, Xuewen Wang, Wei Huang. Review of micromachined optical accelerometers: from mg to sub-μg[J]. Opto-Electronic Advances, 2021, 4(3): 200045-1
    Download Citation