• Acta Optica Sinica
  • Vol. 43, Issue 4, 0404001 (2023)
Wei Ye1、*, Pengfei Du1、aff, Beibei Quan2、aff, Mengfei Li1、aff, Sheng Xiao1、aff, and Jia Liu1、aff
Author Affiliations
  • 1School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong 723001, Shaanxi, China
  • 2Northwest Industries Group Co., Ltd., Xi'an 710043, Shaanxi, China
  • show less
    DOI: 10.3788/AOS221416 Cite this Article Set citation alerts
    Wei Ye, Pengfei Du, Beibei Quan, Mengfei Li, Sheng Xiao, Jia Liu. Effect of In0.83Al0.17As Multiplication Layer on Characteristics of In0.83Ga0.17As/GaAs Avalanche Photodetector[J]. Acta Optica Sinica, 2023, 43(4): 0404001 Copy Citation Text show less
    References

    [1] Benedikovic D, Virot L, Aubin G et al. Silicon-germanium avalanche receivers with fJ/bit energy consumption[J]. IEEE Journal of Selected Topics in Quantum Electronics, 28, 3802508(2022).

    [2] Wang B H, Huang Z H, Sorin W V et al. A low-voltage Si-Ge avalanche photodiode for high-speed and energy efficient silicon photonic links[J]. Journal of Lightwave Technology, 38, 3156-3163(2020).

    [3] Srinivasan S A, Lambrecht J, Guermandi D et al. 56 Gb/s NRZ O-band hybrid BiCMOS-silicon photonics receiver using Ge/Si avalanche photodiode[J]. Journal of Lightwave Technology, 39, 1409-1415(2021).

    [4] Yamamoto Y, Oshita M, Saito S et al. Near-infrared spectroscopic gas detection using a surface plasmon resonance photodetector with 20 nm resolution[J]. ACS Applied Nano Materials, 4, 13405-13412(2021).

    [5] Hakkel K D, Petruzzella M, Ou F et al. Integrated near-infrared spectral sensing[J]. Nature Communications, 13, 103(2022).

    [6] Liu D Q, Li T T, Tang B et al. A near-infrared CMOS silicon avalanche photodetector with ultra-low temperature coefficient of breakdown voltage[J]. Micromachines, 13, 47(2021).

    [7] Li Y, Luo X S, Liang G et al. Demonstration of Ge/Si avalanche photodetector arrays for lidar application[C], Tu3E.3(2019).

    [8] Kharraz O, Forsyth D. Performance comparisons between PIN and APD photodetectors for use in optical communication systems[J]. Optik, 124, 1493-1498(2013).

    [9] Fang Y Q, Chen W, Ao T H et al. InGaAs/InP single-photon detectors with 60% detection efficiency at 1550 nm[J]. The Review of Scientific Instruments, 91, 083102(2020).

    [10] Jiang Y, Chen J. Optimization of InAlAsSb SACM APD with a heterojunction multiplication layer[J]. Journal of Infrared and Millimeter Waves, 38, 598-603(2019).

    [11] Zhao W L, Wang W, Liu C et al. Simulation of extended wavelength avalanche photodiode with the type-II superlattice absorption layer[J]. Crystals, 11, 1210(2021).

    [12] MohammadNejad S, Aghaei F. Noise characteristics improvement of submicron InP/InGaAs avalanche photodiode for laser detection system[J]. Optics Communications, 455, 124561(2020).

    [13] Naseem, Ahmad Z, Liao Y M et al. Avalanche photodiodes with composite charge-layers for low dark current, high-speed, and high-power performance[J]. IEEE Journal of Selected Topics in Quantum Electronics, 28, 3801910(2022).

    [14] Elmahdy A, El-Batawy Y M, Deen M J. An equivalent circuit model and biasing effects over the gain and bandwidth of waveguide avalanche photodetectors (WG-APDs)[J]. Optical and Quantum Electronics, 49, 103(2017).

    [15] Xing H L, Zhang J Q, Liu A F et al. Design of high linearity InGaAs/InP avalanche photodiode with a hybrid absorption layer structure[J]. Infrared Physics & Technology, 102, 103018(2019).

    [16] Li Y H, Gu Y, Chen J W et al. Investigations of Al0.6Ga0.4N MSM photodetectors modified with octadecanethiol[J]. Acta Photonica Sinica, 50, 1123002(2021).

    [17] Wang T, Chen H M, Jia H M et al. Performance research and fabrication of 1310 nm superluminescent diodes with high power[J]. Acta Photonica Sinica, 50, 0623002(2021).

    [18] Ma P, Xie H Y, Sha Y et al. Effect of optical window on optical response characteristics of SiGe/Si heterojunction phototransistor[J]. Acta Photonica Sinica, 49, 0823001(2020).

    [19] Duan Y H, Cong M Y, Jiang D Y et al. Spectral response cutoff wavelength of ZnO ultraviolet photodetector modulated by bias voltage[J]. Acta Optica Sinica, 40, 2004001(2020).

    [20] van Gurp G J, van Dongen T, Fontijn G M et al. Interstitial and substitutional Zn in InP and InGaAsP[J]. Journal of Applied Physics, 65, 553-560(1989).

    [21] Jiang Y, Chen J. Optimization of the linearity of InGaAs/InAlAs SAGCM APDs[J]. Journal of Lightwave Technology, 37, 3459-3464(2019).

    [22] Zhang Z Y, Chen J, Zhu M. Simulation of InGaAs/InAlAs avalanche photodetectors[J]. Proceedings of SPIE, 10157, 101572A(2016).

    [23] Gu Y Q, Tan M, Wu Y Y et al. InAlAs/InGaAs avalanche photodiode with an optimized multiplication layer[J]. Journal of Infrared and Millimeter Waves, 40, 715-720(2021).

    [24] Park C Y, Hyun K S, Kang S G et al. Effect of multiplication layer width on breakdown voltage in InP/InGaAs avalanche photodiode[J]. Applied Physics Letters, 67, 3789-3791(1995).

    [25] Wang H, Yuan Z B, Tan M et al. Effect of multiplication layer thickness on device properties of In0.53Ga0.47As/InP avalanche photodiode[J]. Acta Optica Sinica, 40, 1804001(2020).

    [26] Wang A S, Xiao Q Q, Chen H et al. Design and simulation of Mg2Si/Si avalanche photodiode[J]. Acta Physica Sinica, 70, 108501(2021).

    [27] Wang Y D, Chen J, Xu J T et al. Modeling of frequency-dependent negative differential capacitance in InGaAs/InP photodiode[J]. Infrared Physics & Technology, 89, 41-45(2018).

    Wei Ye, Pengfei Du, Beibei Quan, Mengfei Li, Sheng Xiao, Jia Liu. Effect of In0.83Al0.17As Multiplication Layer on Characteristics of In0.83Ga0.17As/GaAs Avalanche Photodetector[J]. Acta Optica Sinica, 2023, 43(4): 0404001
    Download Citation