• Chinese Optics Letters
  • Vol. 19, Issue 3, 030004 (2021)
Muhammad Saeed1、2, Izaz Ul Haq3, Shafiq Ur Rehman4, Akbar Ali3, Wajid Ali Shah3, Zahid Ali3, Qasim Khan5、**, and Imad Khan3、*
Author Affiliations
  • 1State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China
  • 2College of Nuclear Science and Engineering, East China University of Technology, Nanchang 330013, China
  • 3Center for Computational Materials Science, Department of Physics, University of Malakand, Chakdara, Pakistan
  • 4College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
  • 5College of Electronic Science and Technology, Shenzhen University, Shenzhen 518000, China
  • show less
    DOI: 10.3788/COL202119.030004 Cite this Article Set citation alerts
    Muhammad Saeed, Izaz Ul Haq, Shafiq Ur Rehman, Akbar Ali, Wajid Ali Shah, Zahid Ali, Qasim Khan, Imad Khan. Optoelectronic and elastic properties of metal halides double perovskites Cs2InBiX6 (X = F, Cl, Br, I)[J]. Chinese Optics Letters, 2021, 19(3): 030004 Copy Citation Text show less
    References

    [1] J. Tong, Z. Song, D. H. Kim, X. Chen, C. Chen, A. F. Palmstrom, P. F. Ndione, M. O. Reese, S. P. Dunfield, O. G. Reid, J. Liu, F. Zhang, S. P. Harvey, Z. Li, S. T. Christensen, G. Teeter, D. Zhao, M. M. Al-Jassim, M. F. A. M. van Hest, M. C. Beard, S. E. Shaheen, J. J. Berry, Y. Yan, K. Zhu. Carrier lifetimes of > 1  µs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells. Science, 364, 475(2019).

    [2] P. R. Varadwaj. A2AgCrCl6 (A = Li, Na, K, Rb, Cs) halide double perovskites: a transition metal-based semiconducting material series with appreciable optical characteristics. Phys. Chem. Chem. Phys., 22, 24337(2020).

    [3] M. Ghasemi, M. Hao, M. Xiao, P. Chen, D. He, Y. Zhang, W. Chen, J. Fan, J. H. Yun, B. Jia, X. Wen. Lead-free metal-halide double perovskites: from optoelectronic properties to applications. Nanophotonics(2020).

    [4] Y. Fu, H. Zhu, J. Chen, M. P. Hautzinger, X. Y. Zhu, S. Jin. Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties. Nat. Rev. Mater., 4, 169(2019).

    [5] Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li, Z. Yin, J. You. Surface passivation of perovskite film for efficient solar cells. Nat. Photon., 13, 460(2019).

    [6] N. J. H. Lm, S. H. Heo, J. H. Mandal, T. N. S. I. Seok. Chemical management for colorful, efficient and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett., 13, 1764(2013).

    [7] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, H. J. Snaith. Electron-hole diffusion lengths exceeding 1 micrometer in an organometallic trihalide perovskite absorber. Science, 342, 341(2013).

    [8] Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang. Electron-hole diffusion lengths >175  µm in solution-grown CH3NH3PbI3 single crystals. Science, 347, 967(2015).

    [9] D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, O. M. Bakr. Low trap-state density and long carrier diffusion in organo lead trihalide perovskite single crystals. Science, 347, 519(2015).

    [10] M. A. Green, A. Ho-Baillie, H. J. Snaith. The emergence of perovskite solar cells. Nat. Photon., 8, 506(2014).

    [11] J. Suntivich, H. A. Gasteiger, N. Yabuuchi, H. G. Nakanishi, J. B. Enough, S. Horn. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nat. Chem., 3, 546(2011).

    [12] N. Wang, L. Cheng, R. Ge, S. Zhang, Y. Miao, W. Zou, Y. Wei. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photon., 10, 699(2016).

    [13] S. Park, W. J. Chang, C. W. Lee, S. Park, H. Y. Ahn, K. T. Nam. Photocatalytic hydrogen generation from hydriodic acid using methylammonium lead iodide in dynamic equilibrium with aqueous solution. Nat. Energy, 2, 16185(2017).

    [14] L. Bellaiche, D. Vanderbilt. Virtual crystal approximation revisited: application to dielectric and piezoelectric properties of perovskites. Phys. Rev. B, 61, 7877(2000).

    [15] Q. Chen, J. Wu, X. Ou, B. Huang, J. Almutlaq, A. A Zhumekenov, X. Guan, S. Han, L. Liang, Z. Yi, J. Li, X. Xie, Y. Wang, Y. Li, D. Fan, D. B. L. Teh, A. H. All, O. F. Mohammed, O. M. Bakr, T. Wu, M. Bettinelli, H. Yang, W. Huang, X. Liu. All-inorganic perovskite nanocrystal scintillators. Nature, 561, 88(2018).

    [16] H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, X.-Y. Zhu. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater., 14, 636(2015).

    [17] A. Kostopoulou, K. Brintakis, N. K. Nasikas, E. Stratakis. Perovskite nanocrystals for energy conversion and storage. Nanophotonics, 8, 1607(2019).

    [18] J. Zhou, Z. Xia, M. S. Molokeev, X. Zhang, D. Peng, Q. Liu. Composition design, optical gap and stability investigation of lead-free halide double perovskite Cs2AgInCl6. J. Mater Chem. A, 5, 15031(2017).

    [19] N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A. A. Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petrozza, L. M. Herz, H. J. Snaith. Lead free organic and inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci., 7, 3061(2014).

    [20] Y. Fang, Q. Dong, Y. Shao, Y. Yuan, J. Huang. Highly narrowband perovskite single crystal photo detectors enabled by surface-charge recombination. Nat. Photon., 9, 679(2015).

    [21] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc., 131, 6050(2009).

    [22] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 338, 643(2012).

    [23] H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Grätzel, N. G. Park. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep., 2, 591(2012).

    [24] A. A Emery, J. E. Saal, S. Kirklin, V. I. Hegde, C. Wolverton. High-throughput computational screening of perovskites for thermochemical water splitting applications. Chem. Mater., 28, 5621(2016).

    [25] J. Burschka, N. Pellet, S.-J. Moon, R. H. Baker, P. Gao, M. K. Nazeeruddin, M. Gratzel. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 499, 316(2013).

    [26] L. Lu, X. Pan, J. Luo, Z. Sun. Recent advances and optoelectronic applications of lead-free halide double perovskites. Chem. Eur. J., 26, 16975(2020).

    [27] C. C. Stoumpos, L. Frazer, D. J. Clark, Y. S. Kim, S. H. Rhim, A. J. Freeman, M. G. Kanatzidis. Hybrid germanium iodide perovskite semiconductors: active lone pairs, structural distortions and indirect energy gaps and strong nonlinear optical properties. J. Am. Chem. Soc., 137, 6804(2015).

    [28] T. Umebayashi, K. Asai, T. Kondo, A. Nakao. Electronic structures of lead iodide based low-dimensional crystals. Phys. Rev. B, 67, 155405(2003).

    [29] R. J. Sutton, G. E. Eperon, L. Miranda, E. S. Parrott, B. A. Kamino, J. B. Patel, H. J. Snaith. Bandgap -tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv. Enr. Mater., 6, 1502458(2016).

    [30] M. Kulbak, D. Cahen, . How important is the organic part of lead halide perovskite photovoltaic cells, efficient CsPbBr3 cells. J. Phys. Chem. Lett., 6, 2452(2015).

    [31] X.-G. Zhao, J.-H. Yang, Y. Fu, D. Yang, Q. Xu, L. Yu, S.-H. Wei, L. Zhang. Design of lead-free inorganic halide perovskites for solar cells via cation-transmutation. J. Am. Chem. Soc., 139, 2630(2017).

    [32] C. J. Bartel, J. M. Clary, C. Sutton, D. Vigil-Fowler, B. R. Goldsmith, A. M. Holder, C. B. Musgrave. Inorganic halide double perovskites with optoelectronic properties modulated by sublattice mixing. J. Am. Chem. Soc., 142, 5135(2020).

    [33] J. D. Majher, M. B. Gray, T. A. Strom, P. M. Woodward. Cs2NaBiCl6:Mn2+--a new orange-red halide double perovskite phosphor. Chem. Mater., 31, 1738(2019).

    [34] S. Vasala, M. Karppinen. A2B′B″O6 perovskites. Rev. Pro. Sol. Stat. Chem., 43, 1(2015).

    [35] R. F. Berger, J. B. Neaton. Computational design of low-band-gap double perovskites. Phys. Rev. B, 86, 165211(2012).

    [36] L. R. Morss, M. Siegal, L. Stenger, N. Edelstein. Preparation of cubic chloro complex compounds of trivalent metals: Cs2NaMCl6. Inorg. Chem., 9, 1771(1970).

    [37] W. M. A. Smit, G. J. Dirksen, D. J. Stufkens. Infrared and Raman spectra of the elpasolites Cs2NaSbCl6 and Cs2NaBiCl6: evidence for a pseudo Jahn–Teller distorted ground state. J. Phys. Chem. Solid, 51, 189(1990).

    [38] P. Barbier, M. Drache, G. Mairesse, J. Ravez. Phase transitions in a Cs2−xK1+xBiCl6 solid solution. J. Sol. State Chem., 42, 130(1982).

    [39] F. Benachenhou, G. Mairesse, G. Nowogrocki, D. Thomas. Structural studies of Cs-K-Bi mixed chlorides relation to the crystal structures of A2BMX6, A3MX6, and A2MX6. J. Sol. State Chem., 65, 13(1986).

    [40] D. P. McMeekin, G. Sadoughi, W. Rehman, G. E. Eperon, M. Saliba, M. T. Hörantner, A. Haghighirad, M. B. Johnston, N. Sakai, L. Korte, B. Rech, M. B. Johnston, L. M. Herz, H. J. Snaith. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science, 351, 151(2016).

    [41] H. Choi, J. Jeong, H. B. Kim, S. Kim, B. Walker, G. H. Kim, J. Y. Kim. Cesium-doped methyl ammonium lead iodide perovskites light absorber for hybrid solar cells. Nano. Energy, 7, 80(2014).

    [42] C. Yi, J. Luo, S. Meloni, A. Boziki, N. Ashari-Astani, C. Grätzel, M. Grätzel. Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells. Energy. Environ. Sci., 9, 656(2016).

    [43] Z. Li, M. Yang, J. S. Park, S. H. Wei, J. J. Berry, K. Zhu. Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chem. Mater., 28, 284(2015).

    [44] W. Urland. The assessment of the crystal field parameters for fn-electron systems by the angular overlap model. Rare-earth ions M3+ in Cs2NaMCl6. Chem. Phys. Lett., 83, 116(1981).

    [45] A. H. Slavney, T. Hu, A. M. Lindenberg, H. I. Karunadasa, A. B. Halde. Double perovskite with long carrier recombination lifetime for photovoltaic applications. J. Am. Chem. Soc., 138, 2138(2016).

    [46] E. T. McClure, M. R. Ball, W. Windl, P. M. Woodward. Cs2AgBiX6 (X = Br, Cl): new visible light absorbing, lead-free halide perovskites semiconductors. Chem. Mater., 28, 1348(2016).

    [47] G. Volonakis, A. A. Haghighirad, H. J. Snaith, F. Giustino. Route to stable lead-free double perovskites with the electronic structure of CH3NH3PbI3: a case for mixed-cation [Cs/CH3NH3/CH(NH2)2]2InBiBr6. J. Phys. Chem. Lett., 8, 3917(2017).

    [48] G. Volonakis, M. R. Filip, A. A. Haghighirad, N. Sakai, B. Wenger, H. J. Snaith. Lead-free halide double perovskites via heterovalent substitution of noble metals. J. Phys. Chem. Lett., 7, 1254(2016).

    [49] F. Bachhuber, J. von Appen, R. Dronskowski, P. S. Nilges, T. A. Pfitzner, R. Weihrich. The extended stability ranges of phosphorus allotropes. Ang. Chemie. Interna. Edit., 53, 11629(2014).

    [50] G. Volonakis, A. A. Haghighirad, R. L. Milot, W. H. Sio, M. R. Filip, B. Wenger, F. Giustino. Cs2InAgCl6: a new lead-free halide double perovskite with direct band gap. J. Phys. Chem. Lett., 8, 772(2017).

    [51] F. Wei, Z. Deng, S. Sun, T. Xie, G. Kieslich, D. M. Evans, A. K. Cheetham. The synthesis structure and electronic properties of a lead-free hybrid inorganic–organic double perovskite (MA)2KBiCl6 (MA= methylammonium). Mater. Horizo., 3, 328(2016).

    [52] Z. Deng, F. Wei, S. Sun, G. Kieslich, A. K. Cheetham, P. D. Bristowe. Exploring the properties of lead-free hybrid double perovskites using a combined computational experimental approach. J. Mater. Chem. A, 4, 12025(2016).

    [53] Z. Xiao, K. Z. Du, W. Meng, J. Wang, D. B. Mitzi, Y. Yan. Intrinsic instability of Cs2In(I)M(III)X6 (M = Bi, Sb; X = halogen) double perovskites: a combined density functional theory and experimental study. J. Am. Chem. Soc., 139, 6054(2017).

    [54] P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G. K. H. Madsen, L. D. Marks. WIEN2k: an APW+lo program for calculating the properties of solids. J. Chem. Phys., 152, 074101(2020).

    [55] J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, K. Burke. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett., 100, 136406(2008).

    [56] H. Jiang. Structural and electronic properties of ZrX2 and HfX2 (X = S and Se) from first principles calculations. J. Chem. Phys., 134, 204705(2011).

    [57] I. Khan, I. Ahmad, H. A. R. Aliabad, M. Maqbool. Effect of phase transition on the optoelectronic properties of Zn1−xMgxS. J. Appl. Phys., 112, 073104(2012).

    [58] I. Khan, I. Ahmad, H. A. R. Aliabad, S. J. Asadabadi, Z. Ali, M. Maqbool. Conversion of optically isotropic to anisotropic CdSxSe1-x (0 ≤ x ≤ 1) alloy with S concentration. Comp. Mater. Sci., 77, 145(2013).

    [59] F. Tran, P. Blaha. Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett., 102, 226401(2009).

    [60] B. Traoré, G. Bouder, W. L. D. Hauret, X. Rocquefelte, C. Katan, F. Tran, M. Kepenekian. Efficient and accurate calculation of band gaps of halide perovskites with the Tran–Blaha modified Becke–Johnson potential. Phys. Rev. B, 99, 035139(2019).

    [61] F. Birch. Finite elastic strain of cubic crystals. Phys. Rev., 71, 809(1947).

    [62] P. Umari, E. Mosconi, F. De Angelis. Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications. Sci. Rep., 4, 4467(2014).

    [63] F. Igbari, Z. K. Wang, L. S. Liao. Progress of lead-free halide double perovskites. Adv. Energy Mater., 9, 1803150(2019).

    [64] M. Pozzo, D. Alfè. Structural properties and enthalpy of formation of magnesium hydride from quantum Monte Carlo calculations. Phys. Rev. B, 77, 104103(2008).

    [65] H. Zhang, S. Shang, J. E. Saal, A. Saengdeejing, Y. Wang, L. Q. Chen, Z. K. Liu. Enthalpies of formation of magnesium compounds from first-principles calculations. Intermetallics, 17, 878(2009).

    [66] M. K. Assadi, S. Bakhoda, R. Saidur, H. Hanaei. Recent progress in perovskite solar cells. Renew. Sust. Energy Rev., 81, 2812(2018).

    [67] P. Zhang, J. Yang, S. H. Wei. Manipulation of cation combinations and configurations of halide double perovskites for solar cell absorbers. J. Mater. Chem. A, 6, 1809(2018).

    [68] D. Penn. Wave-number-dependent dielectric function of semiconductors. Phys. Rev., 128, 2093(1962).

    [69] M. Ahmad, G. Rehman, L. Ali, M. Shafiq, R. Iqbal, R. Ahmad, T. Khan, S. J. Asadabadi, M. Maqbool, I. Ahmad. Structural, electronic and optical properties of CsPbX3 (X = Cl, Br, I) for energy storage and hybrid solar cell applications. J. Alloys Compd., 705, 828(2017).

    [70] J. Ma, L. W. Wang. Nanoscale charge localization induced by random orientations of organic molecules in hybrid perovskite CH3NH3PbI3. Nano Lett., 15, 248(2015).

    [71] P. Loöper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipic, S. J. Moon, J. H. Yum, M. Topic, S. D. Wolf, C. Ballif. Complex refractive index spectra of CH3NH3PbI3 perovskite thin films determined by spectroscopic ellipsometry and spectrophotometry. J. Phys. Chem. Lett., 6, 66(2015).

    [72] M. Born. On the Stability of Crystal Lattices(1940).

    [73] W. Voigt. Lehrbuch der Kristallphysik(1928).

    [74] A. Reuss, Z. Angew. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Math. Mech., 9, 49(1929).

    [75] R. Hill. The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc., 65, 349(1952).

    [76] M. Orio, D. A. Pantazis, F. Neese. Density functional theory. Photosynth. Res., 102, 443(2009).

    [77] D. G. Pettifor. Theoretical predictions of structure and related properties of intermetallic. Mater. Sci. Technol., 8, 345(1992).

    [78] K. Chen, L. R. Zhao, J. Rodgers, J. S. Tse. Alloying effects on elastic properties of tin-based nitrides. Phys. D. Appl. Phys., 36, 2725(2003).

    [79] P. H. Mott, J. R. Dorgan, C. M. Roland. The bulk modulus and Poisson’s ratio of incompressible materials. Sound Vib., 312, 572(2008).

    [80] L. Kleinman. Deformation potentials in silicon uniaxial strain. Phys. Rev., 128, 2614(1962).

    Data from CrossRef

    [1] Muhammad Saeed, Akbar Ali, Izaz Ul Haq, Shabbir Muhammad, Aijaz Rasool Chaudhry, Altaf ur Rehman, Zahid Ali, Saifeldin M. Siddeeg, Imad Khan. First-principles study of the structural and optoelectronic properties of ANbO3 (A = Na, K and Rb) in four crystal phases. Materials Science in Semiconductor Processing, 139, 106364(2022).

    Muhammad Saeed, Izaz Ul Haq, Shafiq Ur Rehman, Akbar Ali, Wajid Ali Shah, Zahid Ali, Qasim Khan, Imad Khan. Optoelectronic and elastic properties of metal halides double perovskites Cs2InBiX6 (X = F, Cl, Br, I)[J]. Chinese Optics Letters, 2021, 19(3): 030004
    Download Citation