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Structural geometry, electronic band gaps, density of states, optical and mechanical properties of double perovskite halides
Cs2InBiX6 (X= F, Cl, Br, I) are investigated using the density functional theory. These compounds possess genuine perovskite
stoichiometry, evaluated using various geometry-based indices like tolerance factor, octahedral factor, and formation
energy. The fundamental electronic band gaps are direct and valued in the range 0.80–2.79 eV. These compounds have
narrow band gaps (except Cs2InBiF6) due to strong orbital coupling of the cations. The valence band maximum and con-
duction bandminimum are confirmed to be essentially of In 5s and Bi 6p characters, respectively. The splitting of Bi 6p bands
due to strong spin-orbit coupling causes reduction in the band gaps. These compounds have large dispersion in their bands
and very low carrier effective masses. The substitution of halogen atoms has great influence on the optical properties. The
mechanical properties reveal that Cs2InBiX6 (X = F, Cl, Br, I) satisfy the stability criteria in cubic structures.
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1. Introduction

The appearance of lead (Pb) tri-halide perovskites APbX3 in
photovoltaic cells resulted in power conversion efficiency up
to 25.2% in 2020[1,2], which offers an extraordinary prospect
for wider use of solar energy. Pb halide perovskites have excep-
tional properties such as high charge carrier mobilites, direct and
tunable band gaps, small effective masses of electrons and holes,
high absorption, balanced electron and hole transport, and long
carrier diffusion length[3–9]. Due to the remarkable structural,
electrical, optical, electronic, magnetic, catalytic, and supercon-
ducting properties, halide perovskites find many applications in
new areas of technology[10–14]. They are widely used as optical
functional materials in different devices like light emitting
diodes (LEDs), solar cell absorbers, X-ray detectors, lasers, bat-
teries, photodetectors, and quantum dots[15–20]. Extensive
research has been carried out on photovoltaic hybrid organic–
inorganic perovskites (ABX3) using Pb as a B-site cation from
the last 10 years[21–23]. However, Pb perovskites undergo intrin-
sic structure instability when exposed to moisture, light, air, and
high temperatures. In addition, Pb is a most toxic element and

compounds containing high content of Pb are reported harmful
to health and the environment[24,25].
Overcoming this toxicity and instability problem gives rise to

research work committed to investigating Pb free perovskites
free of intrinsic structure instability and poverty under external
stimuli[24,26]. It is highly desirable to identify Pb free materials
that have properties of the extensively studied MAPbX3

perovskites[3]. The effective replacement of Pb from perovskite
halides leads us to adopt different structural designs. Pb can be
replaced by other group IV elements, e.g., Ge and Sn, as
CH3NH3SnI3 and CH3NH3GeI3, but their use provides chemi-
cal instability due to the preferred poor �4 oxidation state and
poor optoelectronic performance[27]. Inorganic perovskites
CsPbX3 (X = F, Cl, Br, and I) are more thermally stable in
contrast to organic–inorganic hybrid perovskites[28–30].
Alternatively, two Pb can be replaced by a pair of monovalent
and trivalent ions leading to the structure of organic/inorganic
double perovskites having the general formula AB�B3�X6

(A = organic or alkaline earth metal, B� =monovalent, B3�=
trivalent, X = halogen)[18]. The crystal structure of double
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perovskite is stable and the same as in most oxides. Moreover,
introducing differentmetal cations on site B, diverse organic and
inorganic cations on site A, and a variation of halide composi-
tions on site X can fabricate highly efficient materials compa-
rable to MAPbI3 (MA = CH3NH3) and CsPbI3

[26,31]. Double
perovskite halides are emerging efficient materials in numerous
applications such as ferroelectrics, electrocatalysts, phosphors,
white light emitters, spintronics, magnetoresistive materials,
and solar absorbers[32,33]. The early synthesized organic double
perovskite methyl ammonium �CH3NH3�� and formamidinium
�NH2CHNH2�� are not stable and not suitable for the use of
photovoltaic cells[34–38]. Small amounts of inorganic cations
like Cs� doping with methylammonium �CH3NH3�� and for-
mamidinium �NH2CHNH2�� at the A site can raise the stability
of perovskites[29,39–42]. Inorganic double perovskite halides
AB�B3�X6 (with B3� = Sb, Bi; B� = Ag, Cu, Au, and X = Cl,
Br, I) are useful for optoelectronic purposes when their band
gaps lie in the visible range of the electromagnetic spectrum[43].
The successful candidates for solar cells are Cs2AgBiCl6 and
Cs2AgBiBr6. These compounds are more stable and absorb light
in the visible range of the electromagnetic spectrum. The struc-
tures of these compounds are highly symmetric faces of center
cubic double perovskites. Cs2AgBiCl6 and Cs2AgBiBr6 are indi-
rect band gap semiconductors, and Cs2AgBiBr6 is s synthetically
stable and non-harmful perovskite having a band gap of 2.19 eV
by diffuse reflectance spectroscopy and 1.95 eV by photolumi-
nescence[44,45]. It has limited applications in photo cells because
of its low absorption of light[46].
In metal halides perovskites, the A-site cation is not involved

in the formation of the frontier band edges; on the other hand,
anions at the X site (F, Cl, Br, I) modulate the size [in electron
volts (eV)] of the band gap but have nothing with the orbital
character and direct/indirect nature of the band gap[47].
Therefore, the efficiency of metal halide perovskites in solar cells
and LEDs can be tuned by smart choices of B� and B3� sites
cations. Choices for the B3� site are (i) elements of group III
(In, Tl), (ii) pnictogens, and (iii) several transition metals (Cr,
Mn). For the B� site, the possible candidates are (i) noble tran-
sition metals (Ag, Au), (ii) lanthanides, (iii) some actinides (Pu,
Am, and Bk), (iv) elements of group III (In, Tl), and (v) alkaline
metals (Na, K). Among these, lanthanides, actinides, and tran-
sition metals have partially f or d orbitals, so they would have
band extremes of such states. Group III elements in the�3 oxi-
dation state have the highest occupied states of the d character at
the top of the valence band. The pnictogens such as N3� and P3�

are not stable in perovskite structures because of their small size,
according to Goldschmidt’s rule. Arsenic is toxic, and the pos-
sible candidates to realize double perovskites from the pnictogen
family are Sb3� and Bi3�.
Potential contestants for the B� site in double perovskite hal-

ides are alkaline metals, elements of group III, and noble
transition metals. Out of these three, alkaline metals give
non-dispersive bands and hence are not suitable for photovoltaic
perspectives. Cations of the noble transition metals occupy the
highest orbital of the d character when it is in the�1 oxidation

state. This situation will lead to valence band maximum of the d
character and is not needed[26]. Group III elements have filled s
and d orbitals when they are in the �1 oxidation state; in this
configuration, d electrons are deeper than s electrons. The suit-
able elements from group III are In and Tl (the rest have low
atomic numbers and cannot exist in the �1 oxidation state);
as Tl is toxic, the sole option for us is In [48].
Zhao et al.[49] proposed that In1�-based double perovskites

Cs2InBiCl6 and Cs2InSbCl6 are useful solar cell absorbers
because their band gaps are direct, having band gaps of
1.02 eV and 0.91 eV, respectively. These predictions were pro-
vided by the relatively new hybrid functional, including spin-
orbit coupling (SOC) [Heyd–Scuseria–Ernzerhof (HSE +
SOC)] calculations. These two perovskites are found to be
thermodynamically stable against decomposition with small
effective masses of electrons and holes[50]. The In1� oxidation
state is rare; however, InCl and In3Ti2Br9 are the compounds
in which the In1� oxidation state has been reported[51,52].
Although theoretical studies proposed that Cs2InBiX6 and
Cs2InSbX6 (X=Cl, Br, I) have admirable optoelectronic proper-
ties including direct band gaps and small carrier effective
masses, they are unstable due to the favorable�3 oxidation state
of In [53]. To the best of our knowledge, successful synthesis of
these double perovskites has not been reported. The replace-
ment of the A-site cation in these compounds with a large sized
mixed cation such as �Cs=MA=FA�2InBiBr6 can passivate the
oxidation process and might solve the stability problem[26,32,47].
Substitution of the A-site cations can provide stability to double
perovskites[29,39–42], but have no contribution in the formation
of frontier bands and therefore have negligible effects on the
optoelectronic properties[2,47]. These compounds have been
studied theoretically, yet there is a lack of literature about their
elastic and optoelectronic nature. In this article, an attempt has
been made to study the stability and effect of anion substitution
on the structural, chemical bonding, electronic, elastic, and
optical properties of Cs2InBiX6 (X = F, Cl, Br, I) using different
exchange-correlation approximations of the density functional
theory (DFT). These compounds are direct band materials in
contrast to other inorganic double perovskites. The calculated
band gap of Cs2InBiCl6 is 1.37 eV, close to the optimal band
gap (1.4 eV) for photovoltaic applications. The absorption edge
of these compounds is found to be similar to the best-identified
material (MAPbI3) for solar cells. The present work will not only
to help us understand the optoelectronic and mechanical prop-
erties of Cs2InBiX6 (X = F, Cl, Br , I), but will also motivate
researchers to explore double perovskite halides for practical
applications.

2. Details of Calculations

DFT is used to calculate the structural, electronic, optical,
and elastic properties of Pb free inorganic double perovskite
halides Cs2InBiX6 (X = F, Cl, Br , I). The calculations are done
using the full potential linearized augmented plane wave (FP-
LAPW) method implemented in the Wein2k package[54].

Vol. 19, No. 3 | March 2021 Chinese Optics Letters

030004-2



Exchange-correlation energy is dealt by generalized gradient
approximation (GGA) Perdew–Burke–Ernzerhof for solids
(PBEsol)[55], because it is more effective compared to other GGA
characteristics for the calculation of structure optimization[56].
For the calculations of electronic properties of GGA, modified
Becke–Johnson (mBJ) and mBJ with SOC (mBJ� SOC) are
used. GGA often gives much underestimated results as com-
pared to experiments[57,58]. The mBJ[59,60] exchange potential
in addition to GGA is known for its remarkable success in repro-
ducing experimental band gaps of semiconductors in general
and halide perovskites in particular[60]. These compounds con-
tain heavy elements like Bi; therefore, SOC calculations have
been carried out for better treatment of different orbital splitting
in electronic and optical properties. Self-consistent calculations
throughout the Brillouin zone were carried out using 2 × 106

points.

3. Results and Discussion

3.1. Structural Properties

The crystal structure of Cs2InBiX6 is cubic and belongs to
space group Fm-3m (225)[49]. The unit cell structure of
Cs2InBiX6 (X = F, Cl, Br, and I) shown in Fig. 1 possesses
10 atoms. The figure illustrates that, like the basic perovskite
structure (ABX3), double perovskite A2B�B3�X6 is a three-
dimensional (3D) framework, in which the A cation (here
Cs�) occupies the cubic octahedral cavity formed by corner
shearing of In and Bi octahedra. These octrahedra have fascinat-
ing roles in the physical properties of perovskites.
In order to get ground state energies, unit cells of Cs2InBiX6

(X= F, Cl, Br, and I) are optimized using the reported[49] lattice
parameters, symmetry of the space group, and atomic coordi-
nates. Total energy versus volume curves are plotted in Fig. 2
for Cs2InBiX6 compounds, and the obtained values are then fit-
ted to Birch Murnaghan’s equation of states[61]. The calculated
lattice constants are listed in Table 1. Halogen replacement

Fig. 1. Unit cell structure of Cs2InBiX6 (X = F, Cl, Br, and I).

Table 1. Calculated Tolerance Factor τ, Octahedral Factor μ, Lattice Constants
a, Bond Lengths rij, Band Gap Eg, and Effective Masses of Electrons m�

e and
Holes m�

h (mo) of Cs2InBiX6.

Parameters X = F X = Cl X = Br X = I

a (Å) 9.70 11.07 11.30 12.32

9.80
a

11.44
a

11.93
a

12.69
a

τ Eq. (1) 0.95 0.90 0.89 0.87

Eq. (3) 3.49 4.01 4.07 4.13

μ 0.68 0.53 0.47 0.44

rij (Å) Bi–X (x6) 2.25 2.73 2.79 2.82

In–X (x6) 2.60 3.00 3.09 3.15

Cs–X (x12) 3.43 4.06 4.12 4.20

Eg (eV) GGA 2.01 0.38 0.25 0.12

mBJ 2.79 1.37 0.82 0.80

mBJ + SOC 1.87 0.87 0.32 0.23

HSE + SOC 2.22a 1.02a, 0.88b 0a, 0.33b 0a, 0.21b

m�
e mBJ 0.73 0.52 0.37 0.28

mBJ + SOC 0.58 0.38 0.29 0.24

HSE + SOC 0.61a 0.39a 0.30a 0.23a

MaPbI3 0.19c

m�
h mBJ 0.46 0.23 0.19 0.13

mBJ + SOC 0.37 0.19 0.14 0.09

HSE + SOC 0.39a 0.17a 0.11a 0.08a

MaPbI3 0.25c

aReference [31].
bReference [53].
cReference [62].

Fig. 2. Energy versus volume optimization curves of Cs2InBiX6 (X = F,
Cl, Br, I).
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caused a systematic increase in the lattice constant; this increase
is due to the increase in size of anions from F to I.
For structure stability of these double perovskites Cs2InBiX6

(X = F, Cl, Br, I), a modified tolerance (τ) factor and an octahe-
dral factor (μ) are calculated from the ionic radii of the different
components given in the formulas[63]

τ =
rA � rX���
2

p �rB � rX�
, (1)

μ =
rB
rX

, (2)

where rB is the average radius of B� and B3�; rA and rX are the
radii of Cs and halogen atoms. The calculated values of tolerance
and octahedral factors are listed and compared with other theo-
retical results in Table 1. A τ value in the range of 0.8 < τ < 1.0
and a μ value in the range of 0.44 < μ < 0.90 have been sug-
gested, X atoms in the (100)[49]. The tolerance factor varies
between 0.95 and 0.87, and the octahedral factor lies in the range
of 0.68 to 0.44; the tolerance and octahedral factors reveal that
Cs2InBiX6 (X = F, Cl, Br, I) adopts an ideal perovskite structure.
The accurate and probabilistic nature of the tolerance factor as
well as its applicability over a broad range of perovskites creates
a new physical insight into the stability and the prediction of new
stable organic, inorganic, and hybrid perovskites. A new toler-
ance factor formula is used for perovskite structure stability[32]:

τ =
rX
rB

− nA

�
nA −

rA=rB
ln �rA=rB�

�
, (3)

where nA is the oxidation state of the A atom. The calculated
values of τ using Eq. (3) are listed in Table 1, which clarifies that
the values are below 4.18 (stable perovskites are expected when
τ < 4.18)[32]. The tolerance and octahedral factors confirm the
stability of Cs2InBiX6 in cubic crystal structures, and, hence,
these compounds are investigated in elpasolite structures with
space group Fm-3m, which corresponds to an ideal double
perovskite.
Formation energies of Cs2InBiX6 (X = F, Cl, Br, I) com-

pounds have been calculated in order to determine their stabil-
ity[64,65]:

ΔE =
Etotal −

P
nEa

N
, (4)

where Ea is the ground state energy of a single atom, n is the
number of atoms of that species, and N represents the total
number of atoms in a unit cell. The energy of a single atom
can be calculated by optimizing an isolated atom. The calculated
formation energies of Cs2InBiF6, Cs2InBiCl6, Cs2InBiBr6, and
Cs2InBiI6 are −3.54 eV, −5.46 eV, −10.06 eV, and −15.12 eV,
respectively. The negative formation energies confirm the
thermodynamic stability of these compounds.

3.2. Chemical Bonding

For studying bonding aspects of these materials, we examine the
electron charge densities of the understudy compounds. The
electron charge densities for crystal planes (100) and (110)
are plotted in Fig. 3. The overlapping counters between Bi
and X atoms in the (100) plane reveal a covalent bond and cor-
respond to BiX6 octahedra. In plane (110), the counters In and X
overlap each other, which confirm covalent bonds and corre-
spond to InX6 octahedra. The non-overlapping and spherical
symmetric counters of Cs show ionic bonds between Cs and
X. The calculated bond lengths are listed in Table 1. The table
reveals that the bond lengths increase from Cl to I, and this
increase is related to the decreasing electronegativity and
increasing size of the halogens. The electronegativities of Cs,
In, Bi, F, Cl, Br, and I are 0.79, 1.78, 2.02, 3.98, 3.16, 2.96, and
2.66, respectively, on a puling scale basis.

3.3. Electronic Properties

In order to examine the electronic nature, the band structure and
density of states (DOS) are used to look at whether materials are
insulators, conductors, or semiconductors. The band structure
and DOS calculations are performed using GGA, mBJ, and
mBJ + SOC. Figure 4 reveals that Cs2InBiX6 (X = F, Cl, Br, I)
is direct band gap materials. The valence band maximum
(VBM) and conduction band minimum (CBM) both lie on
the same Γ symmetry line of the Brillouin zone. Direct band
gap materials are more efficient for optoelectronic applications
as compared to indirect band gap because of phonon involve-
ment, which make indirect band gap semiconductors bad emit-
ters of light[57,58]. Zhao et al.[49] and Xiao et al.[53] also reported
direct band gaps of Cs2InBiX6 (X= F, Cl, Br, I) using the HSE�
SOC method. Figure 4 shows that SOC pushed the valence and
conduction bands toward the Fermi level that caused reduction
of the band gaps in these compounds. SOC splits the Bi 6p in the
conduction band, pushing one of the orbitals toward the Fermi
level and reducing the band gap. The band gap values are listed
in Table 1. GGA underestimates band gaps of Cs2InBiX6 (X= F,
Cl, Br, I). Our results calculated with mBJ� SOC are consistent

Bi

Bi

Bi Bi

Cs Cs

CsCs Cs Cs

CsCs

Bi

Bi

Bi

In

In In

In

In

X

X

X X

XX

X

X

XX

X

InIn X X

XX

XX

Bi

Bi

X

(100) (110)

Fig. 3. Electronic charge density contours in the [100,110] planes.
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with the reported data[49,53]. MBJ is renowned for its excellent
band gap production near the experimental values. The calcu-
lated band gap value of Cs2InBiCl6 is closer (the best solar cell
material MAPbI3 has a band gap of 1.55 eV) to the optimal value
for photovoltaic performance (1.4 eV)[66].
DOS is mostly used for physical properties of materials like

dielectric spectra, photoemission spectra, and transport proper-
ties. It shows the role and location of different energy orbitals in
the formation of a band structure. Total DOS and partial DOS of
Cs2InBiF6, Cs2InBiCl6, Cs2InBiBr6, and Cs2InBiI6 compounds
are given in Figs. 5 and 6, respectively. The Fermi level separates
the valence and conduction bands. From the total DOS, it is clear

that SOC pushes the conduction band towards the Fermi level,
which reduces band gaps of these metal halides. The partial DOS
demonstrates that In 5s contributes to VBM. The halogen p
orbitals have a dominant role in the formation of bands in
the energy range of −2 to −4 eV in the valence band. Bi 6p orbi-
tals have contributed bands at energy of −4.5 eV in the
valence band.
The CBM is derived primarily from the Bi 6p orbitals, whereas

In 5p orbitals have significant contributions in the energy range
from 4 to 6 eV in the conduction band. The small band gaps of
Cs2InBiX6 compared to othermetal halide perovskites are due to
the fact that strong sp coupling between the 5s state of In and p
orbitals of halogen endorses the VBM to relatively high energy
with respect to the CBM[67]. Figure 6 also reveals that SOC splits
Bi 6p orbitals in the conduction bands and pushes one of the Bi
6p orbitals towards the Fermi level, which further reduces the
band gap of these compounds. The high energy In 5 s2 states,
which occupy VBM, are mainly responsible for the promising
photovoltaic properties of Cs2InBiX6 (X = Cl, Br, I)[53]. Such
high energy states at the top of the valence band are stable with
respect to decomposition[49].
Band dispersion and carrier effective masses play a vital role

in the efficiency of solar cells and other optoelectronic materials.
The VBM and the CBM of Cs2InBiX6 (X = F, Cl, Br, I) are
located at Γ symmetry of the Brillouin zone and have large band
dispersion. This large band dispersion results in the small carrier
effective masses[49]. The effective masses of electrons and holes
are calculated from the parabolic fitting of the band edges
according to the relation

Fig. 4. Electronic band structures of Cs2InBiX6 (X = F, Cl, Br, I).

Fig. 5. Total density of states of Cs2InBiX6 (X = F, Cl, Br, I).

Fig. 6. Partial density of states of Cs2InBiX6 (X = F, Cl, Br, I).
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m� = ℏ2

�
∂
2ε�k�
∂k2

�−1
, (5)

where ε�k� and k represent band edge eigen values and wave vec-
tors, respectively. The effective masses of electrons �m�

e � and
holes �m�

h� are listed and compared with the reported data in
Table 1. The table reveals that Cs2InBiX6 has quit small carrier
effective masses. Our calculated values of the carrier effective
masses are in good agreement with the reported work[48]. The
effective masses are also compared with MAPbI3. It is evident
from the table that SOC not only splits the band but also alters
the values of the carrier effective masses.

3.4. Optical Properties

The interaction of light with thematerial medium is expressed in
terms of optical properties. Presently, we study optical proper-
ties of metal halide double perovskites Cs2InBiX6 (X = F, Cl, Br,
I) under the DFT scheme by measuring their different optical
parameters.
The study of polarization and absorption of electromagnetic

radiation within the material medium is expressed in dielectric
functions, which are mathematically presented by a relation
ε�ω� = ε1�ω� � iε2�ω�. In this relation, the first term represents
the real part ε1�ω�, which shows polarization of light, while the
second term represents imaginary part ε2�ω� of the dielectric
function, whichmeasures the extent of light absorption. The cal-
culated zero frequency limits (static dielectric constant) ε1�0� are
listed and compared in Table 2. This reveals that ε1�0� increases
as the band gap decreases from F to I, meaning that band gap
energy has an inverse relation to ε1�0�, which is consistent with
the Penn model[68]. These compounds have remarkable large
values of ε1�0� comparable with that of MAPbI3 and CsPbI3.
The maximum value of ε1�ω� is observed in the visible energy
range (2–2.5 eV) and then rapidly decreases, and small humps
are observed, which can be related to interband transitions
between valence and conduction bands. MAPbI3 has a dielectric
constant of 6.5 in the visible spectral range at the temperature of

4.2 K[71]. The understudy compounds have larger values of
dielectric function than MAPbI3 in the visible spectral region.
The imaginary part of the dielectric function is the measure of

the extent of light absorption. It is a seed parameter and can be
directly calculated from the Fermi–Golden rule; all other optical
parameters including ε1�ω� are calculated from ε2�ω�. The first
onsets of absorption (absorption edge) are observed roughly at
2.75, 1.35, 0.80, and 0.80 eV for Cs2InBiF6, Cs2InBiCl6,
Cs2InBiBr6, and Cs2InBiI6, respectively. These onsets are close
to the fundamental band gaps of these compounds. The absorp-
tion edge of Cs2InBiCl6 is very close to that of MAPbI3, which is
found at ∼1.55 eV[71]. Halogen substitution significantly
changes the positional occurrence of the transition peaks.
High absorption peaks are observed in the visible spectral region
at energy around 2–3 eV. Several weak peaks are observed in the
energy range of 3–15 eV.
Knowledge of the refractive index n�ω� is necessary for the

effective use of a material in photonic and optical devices.
Refractive indices are inversely proportional to the band gap
of a material, i.e., wide band gap materials have small values
of refractive indices and vice versa. The refractive indices for
Cs2InBiX6 �X = F, Cl, Br, I� compounds are shown in Fig. 7.
The zero frequency limit of refractive index n�0� values are listed
in Table 2. The maximum peaks of the index of refraction for
Cs2InBiCl6, Cs2InBiBr6, and Cs2InBiI6 are observed in the
energy range of 2–2.5 eV for these compounds. The peak values
are larger than the refractive index of MAPbI3 (2.61) in the

Table 2. The Zero-Frequency Values of the Real Part of the Dielectric Function
and Refractive Index.

Compounds ε1(0) n(0)

Cs2InBiF6 2.73 1.66

Cs2InBiCl6 4.65 2.10

Cs2InBiBr6 6.00 2.47

Cs2InBiI6 6.10 2.49

CsPbI3 5.00a 2.1a

MAPbI3 6.00b 1.68b

aReference [69].
bReference [70].
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Fig. 7. Frequency dependent optical parameters of Cs2InBiX6 (X= F,
Cl, Br, I).
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visible spectral range[71]. Appreciable values of n�ω� below
4.5 eV suggest that Cs2InBiX6 is opaque against light. It explores
interactions of the incident photons and explains various fea-
tures of a semiconductor. The calculated L�ω� for Cs2InBiX6

is plotted in Fig. 7, in which no scattering happens when the
energy of the photon is less than the band gap energy. The high-
est peaks appear at the energy range of 17–20 eV. These peaks
show plasma resonance, and their frequencies are called plasma
frequencies.

3.5. Mechanical Properties

The mechanical properties of a material play an important role
in structure stability and strength of a material to an exterior
force, and are associated with basic phenomena of solid state,
like inter-atomic bonding, phonon spectra, and equation of
state. Mechanical properties are computed using independent
elastic coefficients Cij calculated using the Charpin package
embedded in Wien2k and listed in Table 3.
The calculated results satisfy the Born mechanical stability

criteria, i.e., C11 � 2C12 > 0, C44 > 0, C11 − C12 > 0, and
C12 < C11

[72], which show that these compounds are a mechan-
ically stable perovskite structure. Resistance of a material to
reversible deformation upon shear stress is calculated from shear
modulus (G), which gives information about the rigidity of a

material; thus, G is calculated using two models Voigt
(GV )

[73] and Reuss (GR)
[74]:

GV =
1
5
�3C44 � C11 − C12�, (6)

GR =
5�C11 − C12�C44

4C44 � 3�C11 − C12�
: (7)

However, Hill[75] (GH) calculated the arithmetic mean of GV

and GR:

GH =
GV � GR

2
: (8)

The calculated values ofGH show that Cs2InBiI6 has the high-
est value (43.3 GPa) of shear modulus, which clarifies that it is
stiffer than the rest of the materials. The reaction of a material to
linear deformation can be determined from Young’s modulus
(Y), i.e., the toughness of a material depends on the value of
Y. The higher the value of Y, the greater the toughness of a
material will be, which is calculated using the relation

Y =
9BGV

3B� GV
: (9)

The larger value of Y (103.2 GPa) for Cs2InBiF6 indicates
a high toughness among these compounds. Pugh’s ratio (B/G)
can be used to examine the ductile/brittle nature of a
material[76]; material is ductile if the value of B/G is less than
1.75, otherwise it represents a brittle nature. Pettifog and
Chen have established the brittle versus ductile transition in dif-
ferent materials using first principles calculations[77,78]. Our cal-
culated results show that these compounds have lesser value of
B/G than the critical value of 1.75, which confirm that these
materials are brittle in nature. The bonding nature of a material
can be explained with the help of Cauchy pressure[78]. The
value of Cauchy pressure is determined using the following
equation:

C 00 = C12 − C44: (10)

Lower values of Cauchy pressure show directional response in
bonding (covalent bonding), while higher values of Cauchy
pressure result in ionic bonding. The values of C 00 mentioned
in Table 3 confirm that these compounds are brittle in nature.
The compressibility is measured with the help of Poisson’s ratio
ν, which is the ratio of adjacent longitudinal strain in non-axial
tensile stress:

ν =
3B − Y
6B

: (11)

A material having ν < 0.5 is considered incompressible[79],
and ν ≥ 0.5 has the tendency of compressibility, i.e., stretching
a sample causes no adjacent reduction, so its volume remains the
same no matter how distorted it is. The values of Poisson’s ratio
for compounds Cs2InBiX6 (X = F, Cl, Br, I) lie in the range of
0.05–0.21, which show that these materials are incompressible.

Table 3. Calculated Values of Elastic Constants Cij, Shear Modulus G, Young's
Modulus Y, Bulk Modulus B, Shear Constant C 0 , Cauchy Pressure C 00 , B/G Ratio,
ν, ζ, A, λ, and μ Parameters.

Parameters X = F X = Cl X = Br X = I

C11 (GPa) 98 81 105 71

C12 (GPa) 35 28 31 20

C44 (GPa) 57 44 41 62

GV (GPa) 46.8 37.0 39.4 47.4

GR (GPa) 43.0 34.8 39.3 39.4

GH (GPa) 44.9 35.9 39.3 43.4

Y (GPa) 103.2 87.3 95.6 99.6

B (GPa) 49.2 45.6 55.6 37.0

B/G 1.09 1.27 1.41 0.85

C 00 −22 −16 −10 −42

ν 0.15 0.18 0.21 0.05

Z 0.61 0.59 0.52 0.50

A 1.80 1.66 1.100 2.43

C 0 31.5 26.5 37.00 25.5

λ 19.1 21 29.4 5.4

μ 60.7 37 39.4 47.4
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The anisotropic parameter (A) of a material is given as

A =
2C44

C11 − C12
: (12)

For an ideal isotropic system, the value of A is unity and
diverges from unity for anisotropic systems. The calculated val-
ues are 1.80, 1.66, 1.100, and 2.43 for Cs2InBiF6, Cs2InBiCl6,
Cs2InBiBr6, and Cs2InBiI6, respectively, which show the aniso-
tropic nature of these materials. Shear constant (C 0) is another
significant parameter, which explains the stability of a material:

C 0 =
1
2
�C11 − C12�: (13)

The stability of a material requires C 0 > 0, so the calculated
positive values of C show that these compounds are elastically
stable. The interior straining of a compound can be examined
by a parameter called the Kleinman parameter (ζ)[80]. It explains
the bond stretching versus bond bending given as

ξ =
C11 � 8C12

7C11 − 2C12
: (14)

The zero value of ζ indicates minimization of bond bending,
while ζ= 1 indicates minimization of bond stretching. The tabu-
lated values confirm bond stretching in these compounds.
Another motivating mechanical parameter is Lame’s constants
(λ, μ), which are used to define anisotropy of a material:

λ =
Yν

�1� v��1 − 2ν� , (15)

μ =
Y

2�1 − ν� : (16)

For isotropic materials, λ = C12 and μ = C 0. The calculated
Lame’s coefficients of Cs2InBiX6 (X = F, Cl, Br, I) are given
in Table 3, confirming the results obtained from the anisotropic
parameter (A) and showing that these materials are anisotropic.

4. Conclusions

It is summarized that the understudy compounds Cs2InBiX6

(X = F, Cl, Br and I) are theoretically investigated in the frame-
work of the DFT. Goldschmidt’s tolerance factor, octahedral
factor, the newly proposed tolerance factor, formation energy,
and elastic constant demonstrate that these compounds possess
a stable perovskite structure. The mechanical parameters reveal
that these compounds are brittle and anisotropic. These perov-
skites are optically active materials in the infrared spectral
region. The substitution of the anion tuned the band gap from
2.79 to 0.80 eV. The valence band is dominated by In s and X p
orbitals, where the conduction band is mostly made of Bi p
states. High dielectric materials comparable to MAPbI3 are
found, and interesting variations are observed in their optical
properties.
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