• Journal of Semiconductors
  • Vol. 42, Issue 11, 112802 (2021)
Xi Wang1、2, Yiwen Zhong1, Hongbin Pu1、2, Jichao Hu1、2, Xianfeng Feng1、2, and Guowen Yang3
Author Affiliations
  • 1Department of Electronic Engineering, Xi'an University of Technology, Xi'an 710048, China
  • 2Xi’an Key Laboratory of power Electronic Devices and High Efficiency Power Conversion, Xi’an 710048, China
  • 3Sanli Intelligent Electric Co., Ltd, Xi’an 712000, China
  • show less
    DOI: 10.1088/1674-4926/42/11/112802 Cite this Article
    Xi Wang, Yiwen Zhong, Hongbin Pu, Jichao Hu, Xianfeng Feng, Guowen Yang. Investigation of lateral spreading current in the 4H-SiC Schottky barrier diode chip[J]. Journal of Semiconductors, 2021, 42(11): 112802 Copy Citation Text show less

    Abstract

    Lateral current spreading in the 4H-SiC Schottky barrier diode (SBD) chip is investigated. The 4H-SiC SBD chips with the same vertical parameters are simulated and fabricated. The results indicate that there is a fixed spreading resistance at on-state in current spreading region for a specific chip. The linear specific spreading resistance at the on-state is calculated to be 8.6 Ω/cm in the fabricated chips. The proportion of the lateral spreading current in total forward current (Psp) is related to anode voltage and the chip area. Psp is increased with the increase in the anode voltage during initial on-state and then tends to a stable value. The stable values of Psp of the two fabricated chips are 32% and 54%. Combined with theoretical analysis, the proportion of the terminal region and scribing trench in a whole chip (Ksp) is also calculated and compared with Psp. The Ksp values of the two fabricated chips are calculated to be 31.94% and 57.75%. The values of Ksp and Psp are close with each other in a specific chip. The calculated Ksp can be used to predict that when the chip area of SiC SBD becomes larger than 0.5 cm2, the value of Psp would be lower than 10%.
    $ J_{{\text{FA}}}^{} = \frac{{{I_{\text{F}}}}}{{{S_{\text{A}}}}} , $ (1)

    View in Article

    $ J_{{\text{RA}}}^{} = \frac{{{I_{\text{R}}}}}{{{S_{\text{A}}}}} , $ (2)

    View in Article

    $ {I_{\text{F}}} = {I_{\text{A}}} + {I_{{\text{sp}}}} , $ (3)

    View in Article

    $ J_{{\text{FA}}}^{} = \frac{{{I_{\text{A}}}}}{{{S_{\text{A}}}}} + \frac{{{I_{{\text{sp}}}}}}{{{S_{\text{A}}}}} . $ (4)

    View in Article

    $ J_{{\text{FA2}}}^{} - J_{{\text{FA1}}}^{} = \frac{{{I_{{\text{sp2}}}}}}{{{S_{{\text{A2}}}}}} - \frac{{{I_{{\text{sp1}}}}}}{{{S_{{\text{A1}}}}}} , $ (5)

    View in Article

    $ J_{{\text{FA2}}}^{} - J_{{\text{FA1}}}^{} = \frac{{{J_{{\text{sp}}}} {C_{{\text{A}}2}}}}{{{S_{{\text{A2}}}}}} - \frac{{{J_{{\text{sp}}}} {C_{{\text{A}}1}}}}{{{S_{{\text{A1}}}}}} , $ (6)

    View in Article

    $ J_{{\text{sp}}}^{} = \frac{{{I_{{\text{F}}2}} {S_{{\text{A1}}}} - {I_{{\text{F}}1}} {S_{{\text{A2}}}}}}{{{{{C}}_{{\text{A}}2}} {S_{{\text{A1}}}} - {{{C}}_{{\text{A}}1}} {S_{{\text{A2}}}}}} . $ (7)

    View in Article

    $ I_{{\text{sp}}}^{} = {J_{{\text{sp}}}} {C_{\text{A}}} , $ (8)

    View in Article

    $ P_{{\text{sp}}}^{} = \frac{{{J_{{\text{sp}}}} {C_{\text{A}}}}}{{{I_{\text{F}}}}} , $ (9)

    View in Article

    $ {K}_{\text{sp}}^{}=\left(1-\frac{{S}_{\text{A}}}{{S}_{}}\right)\times 100\text{%} , $ (10)

    View in Article

    Xi Wang, Yiwen Zhong, Hongbin Pu, Jichao Hu, Xianfeng Feng, Guowen Yang. Investigation of lateral spreading current in the 4H-SiC Schottky barrier diode chip[J]. Journal of Semiconductors, 2021, 42(11): 112802
    Download Citation