• Journal of Semiconductors
  • Vol. 40, Issue 4, 042401 (2019)
A. Tonk and N. Afzal
Author Affiliations
  • Department of Electronics & Communication Engineering, F/o Engineering & Technology, Jamia Millia Islamia, New Delhi, 110025, India
  • show less
    DOI: 10.1088/1674-4926/40/4/042401 Cite this Article
    A. Tonk, N. Afzal. Second generation fully differential current conveyor based analog circuits[J]. Journal of Semiconductors, 2019, 40(4): 042401 Copy Citation Text show less

    Abstract

    In this paper, we present a new voltage-mode biquad filter that uses a six-terminal CMOS fully differential current conveyor (FDCCII). The FDCCII with only 23 transistors in its structure and operating at ± 1.5 V, is based on a class AB fully differential buffer. The proposed filter has the facility to tune gain, ωo and Q. A circuit division circuit (CDC) is employed to digitally control the FDCCII block. This digitally controlled FDCCII is used to realize a new reconfigurable fully-differential integrator and differentiator. We performed SPICE simulations to determine the performance of all circuits using CMOS 0.25 μm technology.
    $ \begin{split} &\frac{{{V_0}_2}}{{V_{\rm in}}} = - \frac{{\mathop {}\nolimits_{\displaystyle\frac{{{G_1}s}}{{{C_1}}}} }}{{{s^2} + s\left( {\displaystyle\frac{{{G_2}_{}}}{{{C_1}}}} \right) + \displaystyle\frac{{{G_4}{G_3}}}{{{C_1}{C_2}}}}},\\ &\displaystyle\frac{{{V_0}_1}}{{V_{\rm in}}} = - \displaystyle\frac{{{G_1}{G_3}/{C_1}{C_2}}}{{{s^2} + s\left( {\displaystyle\frac{{{G_2}}}{{{C_1}}}} \right) + \displaystyle\frac{{{G_4}{G_3}}}{{{C_1}{C_2}}}}},\\ &\omega_{\rm o} = \sqrt {{{{G_4}{G_3}} / {{C_1}{C_2}}}} ,\\ &{{\omega_{\rm o}} / Q} = \displaystyle\frac{{{G_2}}} {C_1},\\ &Q = \displaystyle\frac{1}{{{G_2}}}\sqrt {{{{C_1}{G_4}{G_3}} / {{C_2}}}} . \end{split} $ ()

    View in Article

    $ \begin{aligned} &\displaystyle\frac{{{V_0}_2}}{{V_{\rm in}}} = - \displaystyle\frac{{\mathop {{}}\nolimits_{\displaystyle\frac{\alpha _1{{G_1}s}}{{{C_1}}}} }}{{{s^2} + s\left( {\displaystyle\frac{{{G_2}_{}}}{{{C_1}}}} \right) + \displaystyle\frac{{{\alpha _3}{\alpha _2}{G_4}{G_3}}}{{{C_1}{C_2}}}}},\\ &\displaystyle\frac{{{V_0}_1}}{{V_{\rm in}}} = - \displaystyle\frac{{{\alpha _1}{\alpha _2}{G_1}{G_3}/{C_1}{C_2}}}{{{s^2} + s\left( {\displaystyle\frac{{{G_2}}}{{{C_1}}}} \right) + \displaystyle\frac{{{\alpha _3}{\alpha _2}{G_4}{G_3}}}{{{C_1}{C_2}}}}},\\ &\omega_{\rm o} = \sqrt {{{\alpha _3}{\alpha _2}{G_4}{G_3}} /{{C_1}{C_2}}} ,\\ &{{\omega_{\rm o}} / Q} = \displaystyle\frac{{{G_2}}}{C_1},\\ &Q = \displaystyle\frac{1}{{{G_2}}}\sqrt {{{{\alpha _3}{\alpha _2}{C_1}{G_4}{G_3}} / {{C_2}}}} . \end{aligned} $ ()

    View in Article

    $ \begin{aligned} &{S^{\omega_{\rm o}}}_{\alpha_2,\alpha_3,G_4,G_3} = - {S^{\omega_{\rm o}}}_{C_2,C_1} = \frac{1}{2},\\ &{S^{\omega o}}_{\alpha_2,\alpha_3,G_4,G_3,C_1} = - {S^Q}C_1 = \frac{1}{2},\\ &{S^Q}G_2 = - 1. \end{aligned} $ ()

    View in Article

    $\begin{split} &{I_{{\rm{out}}1}} = {{a}}{I_{{\rm{in}}}} \wedge {{a}} = \frac{1}{{{2^n}}}\left( {\sum\limits_{j = 0}^{n - 1} {{b_j}{2^j}} } \right)\;{\rm{with}}\;{{n}} = 6\;\\ &\quad {\rm{where}}\;{{N}} = \sum\limits_{j = 0}^{n - 1} {{b_j}{2^j}} . \end{split}$ ()

    View in Article

    $ \begin{split} &V_{\rm out} = \frac{{\alpha V_{\rm in}}}{{sCR}},\\ &V_{\rm out} = \alpha sCRV_{\rm in}. \end{split} $ ()

    View in Article

    A. Tonk, N. Afzal. Second generation fully differential current conveyor based analog circuits[J]. Journal of Semiconductors, 2019, 40(4): 042401
    Download Citation