• Journal of Semiconductors
  • Vol. 42, Issue 12, 122802 (2021)
Quan Wang1、2、3, Changxi Chen3、4, Wei Li3、4, Yanbin Qin3、4, Lijuan Jiang3、4、5, Chun Feng3、4、5, Qian Wang3、5, Hongling Xiao3、4、5, Xiufang Chen1、2, Fengqi Liu3、4、5, Xiaoliang Wang3、4、5, Xiangang Xu1、2, and Zhanguo Wang3、4
Author Affiliations
  • 1State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
  • 2Institute of Novel Semiconductors, Shandong University, Jinan 250100, China
  • 3Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 4Center of Materials Science and Optoelectronics Engineering and School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
  • 5Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing 100083, China
  • show less
    DOI: 10.1088/1674-4926/42/12/122802 Cite this Article
    Quan Wang, Changxi Chen, Wei Li, Yanbin Qin, Lijuan Jiang, Chun Feng, Qian Wang, Hongling Xiao, Xiufang Chen, Fengqi Liu, Xiaoliang Wang, Xiangang Xu, Zhanguo Wang. Fabrication and characterization of AlGaN/GaN HEMTs with high power gain and efficiency at 8 GHz[J]. Journal of Semiconductors, 2021, 42(12): 122802 Copy Citation Text show less
    References

    [1] M A Khan, J N Kuznia, A R Bhattarai et al. Metal semiconductor field effect transistor based on single crystal GaN. Appl Phys Lett, 62, 1786(1993).

    [2] O Ambacher, rt J Smart, y J R Shealy et al. Two-dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped. J Appl Phys, 85, 3222(2000).

    [3] S C Jain, M Willander, J Narayan et al. III-nitrides: Growth, characterization, and properties. J Appl Phys, 87, 965(2000).

    [4] X L Wang, G X Hu, Z Y Ma et al. MOCVD-grown AlGaN/AlN/GaN HEMT structure with high mobility GaN thin layer as channel on SiC. Chin J Semicond, 27, 1521(2006).

    [5] A Fletcher, D Nirmal, J Ajayan et al. An intensive study on assorted substrates suitable for high JFOM AlGaN/GaN HEMT. Silicon, 13, 1591(2020).

    [6] Y Gao, H Zhang, Y Zong et al. 150 mm 4H-SiC substrate with low defect density. Mater Sci Forum, 858, 41(2016).

    [7] B K Jang, J H Park, J W Choi et al. Modified hot-zone design of growth cell for reducing the warpage of 6"-SiC wafer. Mater Sci Forum, 1004, 32(2020).

    [8] U K Mishra, P Parikh, Y F Wu. AlGaN/GaN HEMTs-an overview of device operation and applications. Proc IEEE, 90, 1022(2002).

    [9] R S Pengelly. A review of GaN on SiC high electron-mobility power transistors and MMICs. IEEE Trans Microwave Theory Tech, 60, 1764(2012).

    [10] V Camarchia, R Quaglia, A Piacibello et al. A review of technologies and design techniques of millimeter-wave power amplifiers. IEEE Trans Microwave Theory Tech, 68, 2957(2020).

    [11] X L Wang, T S Chen, H L Xiao et al. High-performance 2 mm gate width GaN HEMTs on 6H-SiC with output power of 22.4W@8GHz. Solid-State Electron, 52, 926(2008).

    [12] X L Wang, T S Chen, H L Xiao et al. An internally-matched GaN HEMTs device with 45.2 W at 8 GHz for X-band application. Solid State Electron, 53, 332(2009).

    [13] Q Wang, X L Wang, H L Xiao et al. X-band GaN high electron mobility transistor power amplifier on 6H-SiC with 110 W output power. J Nanosci Nanotechnol, 18, 7451(2018).

    [14] U K Mishra, L Shen, T E Kazior et al. GaN-based RF power devices and amplifiers. Proc IEEE, 96, 287(2008).

    [15] C Chen, R Sadler, D Wang et al. The interplay of thermal, time and Poole-Frenkel emission on the trap-based physical modeling of GaN HEMT drain characteristics. 2017 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), 1(2017).

    [16] K Kellogg, S Khandelwal, L Dunleavy et al. Characterization of thermal and trapping time constants in a GaN HEMT. 2020 94th ARFTG Microwave Measurement Symposium (ARFTG), 1(2020).

    [17] L Q Zhang, P F Wang. AlGaN/GaN HEMT with LPCVD deposited SiN and PECVD deposited SiCOH low-k passivation. Appl Phys Express, 12, 036501(2019).

    [18] A Nakajima, K Itagaki, K Horio. Effects of field plate on buffer trapping in AlGaN/GaN HEMTs. Phys Status Solidi C, 6, 2840(2009).

    [19] Y Bi, X L Wang, H L Xiao et al. The influence of the InGaN back-barrier on the properties of Al0.3Ga0.7N/AlN/GaN/InGaN/GaN structure. Eur Phys J-Appl Phys, 55, 10102(2011).

    [20] L Shen, S Heikman, B Moran et al. AlGaN/AlN/GaN high-power microwave HEMT. IEEE Electron Device Lett, 22, 457(2001).

    [21] E T Yu, X Z Dang, L S Yu et al. Schottky barrier engineering in III-V nitrides via the piezoelectric effect. Appl Phys Lett, 73, 1880(1998).

    [22] T Gessmann, J W Graff, Y L Li et al. Ohmic contact technology in III-V nitrides using polarization effects in cap layers. IEEE Lester Eastman Conference on High Performance Devices, 492(2002).

    [23] S Arulkumaran, T Egawa, H Ishikawa. Studies on the influences of i-GaN, n-GaN, p-GaN and InGaN cap layers in AlGaN/GaN high-electron-mobility transistors. Jpn J Appl Phys, 44, 2953(2005).

    [24] J M Gong, Q Wang, J D Yan et al. Comparison of GaN/AlGaN/AlN/GaN HEMTs grown on sapphire with Fe-modulation-doped and unintentionally doped GaN buffer: Material growth and device fabrication. Chin Phys Lett, 33, 103(2016).

    [25] M Singh, M J Uren, T Martin et al. 'Kink' in AlGaN/GaN-HEMTs: Floating buffer model. IEEE Trans Electron Devices, 65, 3746(2018).

    [26] L H Fu, H Lu, D J Chen et al. Field-dependent carrier trapping induced kink effect in AlGaN/GaN high electron mobility transistors. Appl Phys Lett, 98, 586(2011).

    [27] M A Alim, S Afrin, A A Rezazadeh et al. Thermal response and correlation between mobility and kink effect in GaN HEMTs. Microelectron Eng, 219, 111148.1(2020).

    [28]

    [29] B Gelmont, K Kim, M Shur. Monte Carlo simulation of electron transport in gallium nitride. J Appl Phys, 74, 1818(1993).

    [30]

    [31]

    [32] A M Darwish, B D Huebschman, E Viveiros et al. Dependence of GaN HEMT millimeter-wave performance on temperature. IEEE Trans Microwave Theory Tech, 57, 3205(2009).

    [33] J Kühn. AlGaN/GaN-HEMT power amplifiers with optimized power-added efficiency for X-band applications. KIT Scientific Publishing(2011).

    [34] R Vetury, N Q Zhang, S Keller et al. The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs. IEEE Trans Electron Devices, 48, 560(2001).

    [35] R Chu, L Shen, N Fichtenbaum et al. Correlation between DC–RF dispersion and gate leakage in deeply recessed GaN/AlGaN/GaN HEMTs. IEEE Electron Device Lett, 29, 303(2008).

    Quan Wang, Changxi Chen, Wei Li, Yanbin Qin, Lijuan Jiang, Chun Feng, Qian Wang, Hongling Xiao, Xiufang Chen, Fengqi Liu, Xiaoliang Wang, Xiangang Xu, Zhanguo Wang. Fabrication and characterization of AlGaN/GaN HEMTs with high power gain and efficiency at 8 GHz[J]. Journal of Semiconductors, 2021, 42(12): 122802
    Download Citation