• Journal of Semiconductors
  • Vol. 40, Issue 8, 081508 (2019)
Xiaoxi Li1、2, Baojuan Dong1、2, Xingdan Sun1、2, Hanwen Wang1、2, Teng Yang1、2, Guoqiang Yu3、4, and Zheng Vitto Han1、2
Author Affiliations
  • 1Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
  • 2School of Material Science and Engineering, University of Science and Technology of China, Hefei 230026, China
  • 3Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • 4Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.1088/1674-4926/40/8/081508 Cite this Article
    Xiaoxi Li, Baojuan Dong, Xingdan Sun, Hanwen Wang, Teng Yang, Guoqiang Yu, Zheng Vitto Han. Perspectives on exfoliated two-dimensional spintronics[J]. Journal of Semiconductors, 2019, 40(8): 081508 Copy Citation Text show less
    References

    [1] P M Tedrow, R Meservey. Spin polarization of electrons tunneling from films of Fe, Co, Ni, and Gd. Phys Rev B, 7, 318(1973).

    [2] M Jullière. Tunneling between ferromagnetic films. Phys Lett A, 54, 225(1975).

    [3] M Johnson, R H Silsbee. Interfacial charge-spin coupling: Injection and detection of spin magnetization in metals. Phys Rev Lett, 55, 1790(1985).

    [4] M Baibich, J M Broto, A Fert et al. Magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys Rev Lett, 61, 2472(1988).

    [5] G Binasch, P Grünberg, F Saurenbach et al. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys Rev B, 39, 4828(1989).

    [6] S Datta, B Das. Electronic analog of the electro-optic modulator. Appl Phys Lett, 56, 665(1990).

    [7] B Dieny, V S Speriosu, S Metin et al. Magnetotransport properties of magnetically soft spin-valve structures. J Appl Phys, 69, 4774(1991).

    [8] J S Moodera, L R Kinder, T M Wong et al. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys Rev Lett, 74, 3273(1995).

    [9] E I Rashba. Properties of semiconductors with an extremum loop. I. Cyclotron and combinational resonance in a magnetic field perpendicular to the plane of the loop. Soviet Phys Solid State, 2, 1109(1960).

    [10] K S Novoselov, A K Geim, S V Morozov et al. Electric field effect in atomically thin carbon films. Science, 306, 666(2004).

    [11] M Nicolas, G Marco, S Philippe et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat Nanotechnol, 13, 246(2018).

    [12] K F Mak, C Lee, J Hone et al. Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett, 105, 136805(2010).

    [13] B Huang, G Clark, E Navarro-Moratalla et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 546, 270(2017).

    [14] B Huang, G Clark, D R Klein et al. Electrical control of 2D magnetism in bilayer CrI3. Nat Nanotechnol, 13, 544(2018).

    [15] Z Wang, T Zhang, M Ding et al. Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor. Nat Nanotechnol, 13, 554(2018).

    [16] N D Mermin, H Wagner. Absence of derromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys Rev Lett, 17, 1133(1966).

    [17] Y J Deng, Y J Yu, Y C Song et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature, 563, 94(2018).

    [18] Z Y Fei, B Huang, P Malinowski et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat Mater, 17, 778(2018).

    [19] C Gong, L Li, Z L Li et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 546, 265(2017).

    [20] D Zhong, K L Seyler, X Y Linpeng et al. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci Adv, 3, 5(2017).

    [21] D Ghazaryan, M T Greenaway, Z Wang et al. Magnon-assisted tunnelling in van der Waals heterostructures based on CrBr3. Nat Electron, 1, 344(2018).

    [22] E J Samuelsen, R Silberglitt, G Shirane et al. Spin waves in ferromagnetic CrBr3 studied by inelastic neutron scattering. Phys Rev B, 3, 157(1971).

    [23] H H Kim, B W Yang, S W Li et al. Evolution of interlayer and intralayer magnetism in three atomically thin chromium trihalides. PNAS, 116, 11131(2019).

    [24] X H Cai, T C Song, N P Wilson et al. Atomically thin CrCl3: an in-plane layered antiferromagnetic insulator. Nano Lett, 19, 3993(2019).

    [25] Z U Rehman, Z Muhammad, O A Moses et al. Magnetic isotropy/anisotropy in layered metal phosphorous trichalcogenide MPS3 (M = Mn, Fe) single crystals. Micromachines, 9, 292(2018).

    [26] G Long, T Zhang, X B Cai et al. Isolation and characterization of few-layer manganese thiophosphite. ACS Nano, 11, 11330(2017).

    [27] K Kim, S Y Lim, J U Lee et al. Suppression of magnetic ordering in XXZ-type antiferromagnetic monolayer NiPS3. Nat Commun, 10, 345(2019).

    [28] M Bonilla, S Kolekar, Y J Ma et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat Nanotechnol, 13, 289(2018).

    [29] S J Gong, C Gong, Y Y Sun et al. Electrically induced 2D half-metallic antiferromagnets and spin field effect transistors. PANS, 115, 8511(2018).

    [30] J J Niu, B M Yan, Q Q Ji et al. Anomalous Hall effect and magnetic orderings in nanothick V5S8. Phys Rev B, 96, 075402(2017).

    [31] Y Zhang, J W Chu, L Yin et al. Ultrathin magnetic 2D single-crystal CrSe. Adv Mater, 31, 1900056(2019).

    [32] J W Chu, Y Zhang, Y Wen et al. Sub-millimeter-scale growth of one-unit-cell-thick ferrimagnetic Cr2S3 nanosheets. Nano Lett, 19, 2154(2019).

    [33] T Nikolaos, J Csaba, P Mihaita et al. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature, 448, 571(2007).

    [34] M V Kamalakar, C Groenveld, A Dankert et al. Long distance spin communication in chemical vapour deposited graphene. Nat Commun, 6, 6766(2015).

    [35] P Wei, S Lee, F Lemaitre et al. Strong interfacial exchange field in the graphene/EuS heterostructure. Nat Mater, 15, 711(2016).

    [36] W Wang, A Narayan, L Tang et al. Spin-valve effect in NiFe/MoS2/NiFe junctions. Nano Lett, 15, 5261(2015).

    [37] D Xiao, G B Liu, W X Feng et al. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys Rev Lett, 108, 196802(2012).

    [38] K F Mak, K L He, J Shan et al. Control of valley polarization in monolayer MoS2 by optical helicity. Nat Nanotechnol, 7, 494(2012).

    [39] A V Stier, K M McCreary, B T Jonker et al. Exciton diamagnetic shifts and valley Zeeman effects in monolayer WS2 and MoS2 to 65 Tesla. Nat Commun, 7, 10643(2016).

    [40] J G Roch, G Froehlicher, N Leisgang et al. Spin-polarized electrons in monolayer MoS2. Nat Nanotechnol, 14, 432(2019).

    [41] C L Kane, E J Mele. Quantum spin Hall effect in graphene. Phys Rev Lett, 95, 226801(2005).

    [42] A F Young, J D Sanchez-Yamagishi, B Hunt et al. Tunable symmetry breaking and helical edge transport in a graphene quantum spin Hall state. Nature, 505, 528(2014).

    [43] C Andrea, K Svetlana, R Mario et al. Graphene spintronic devices with molecular nanomagnets. Nano Lett, 11, 2634(2011).

    [44] J F Dillon, H Kamimura, J P Remeika et al. Magneto-optical properties of ferromagnetic chromium trihalides. J Phys Chem Solids, 27, 1531(1966).

    [45] B Li, T Xing, M Z Zhong et al. A two-dimensional Fe-doped SnS2 magnetic semiconductor. Nat Commun, 8, 1958(2017).

    [46] J T Ho, J D Litster. Magnetic equation of state of CrBr3 near critical point. Phys Rev Lett, 22, 603(1969).

    [47] K Okuda, K Kurosawa, S Saito et al. Magnetic properties of layered compound MnPS3. J Phys Soc Jpn, 55, 4456(1986).

    [48] V Carteaux, D Brunet, G Ouvrard et al. Crystallographic, magnetic and electronic structures of a new layered ferromagnetic compound Cr2Ge2Te6. J Phys Condens Matter, 7, 69(1995).

    [49] H Ji, R A Stokes, L D Alegria et al. A ferromagnetic insulating substrate for the epitaxial growth of topological insulators. J Appl Phys, 114, 114907(2013).

    [50] H J Deiseroth, K Aleksandrov, C Reiner et al. Fe3GeTe2 and Ni3GeTe2—two new layered transition-metal compounds: crystal structures, HRTEM investigations, and magnetic and electrical properties. Eur J Inorg Chem, 2006, 1561(2006).

    [51] B Chen, J Yang, H Wang et al. Magnetic properties of layered itinerant electron ferromagnet Fe3GeTe2. J Phys Soc Jpn, 82, 124711(2013).

    [52] J F Dillon, C E Olson. Magnetization resonance and optical properties of ferromagnet CrI3. J Appl Phys, 36, 1259(1965).

    [53] V Carteaux, F Moussa, M Spiesser. 2D ising-like ferromagnetic behavior for the lamellar Cr2Si2Te6 compound: a neutron-scattering investigation. Europhys Lett, 29, 251(1995).

    [54] X Li, T Cao, Q Niu et al. Coupling the valley degree of freedom to antiferromagnetic order. Proc Natl Acad Sci USA, 110, 3738(2013).

    [55] B Sachs, T O Wehling, K S Novoselov et al. Ferromagnetic two-dimensional crystals: single layers of K2CuF4. Phys Rev B, 88, 201402(2013).

    [56] T Kong, K Stolze, E I Timmons et al. VI3—a new layered ferromagnetic semiconductor. Adv. Mater, 31, 1808074(2019).

    [57] M A McGuire, H Dixit, V R Cooper et al. Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI3. Chem Mater, 27, 612(2015).

    [58] N Sivadas, M W Daniels, R H Swendsen et al. Magnetic ground state of semiconducting transition-metal trichalcogenide monolayers. Phys Rev B, 91, 235425(2015).

    [59] K Du, X Wang, Y Liu et al. Weak van der Waals stacking, wide-range band gap, and raman study on ultrathin layers of metal phosphorus trichalcogenides. ACS Nano, 10, 1738(2106).

    [60] A F May, S Calder, C Cantoni et al. Magnetic structure and phase stability of the van der Waals bonded ferromagnet Fe3–xGeTe2. Phys Rev B, 93, 014411(2016).

    [61] S Lee, K Y Choi, S Lee et al. Tunneling transport of mono- and few-layers magnetic van der Waals MnPS3. Appl Mater, 4, 086108(2016).

    [62] M Lin, H L Zhuang, J Yan et al. Ultrathin nanosheets of CrSiTe3: a semiconducting two-dimensional ferromagnetic material. J Mater Chem C, 4, 315(2016).

    [63] W Zhang, Q Qu, P Zhu et al. Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides. J Mater Chem C, 3, 12457(2015).

    [64] M A McGuire, G Clark, S KC et al. Magnetic behavior and spin-lattice coupling in cleavable van der Waals layered CrCl3 crystals. Phys Rev Mater, 1, 014001(2017).

    [65] A McGuire. Crystal and magnetic structures in layered, transition metal dihalides and trihalides. Crystals, 7, 121(2017).

    [66] T J Williams, C C Aczel, M D Lumsden et al. Magnetic correlations in the quasi-two-dimensional semiconducting ferromagnet CrSiTe3. Phys Rev B, 92, 144404(2015).

    [67] X Li, J Yang. CrXTe3 (X = Si, Ge) nanosheets: two dimensional intrinsic ferromagnetic semiconductors. J Mater Chem C, 2, 7071(2014).

    [68] V Carteaux, G Ouvrard, J C Grenier et al. Magnetic structure of the new layered ferromagnetic chromium hexatellurosilicate Cr2Si2Te6. J Magn Magn Mater, 94, 127(1991).

    [69] L D Casto, A J Clune, M O Yokosuk et al. Strong spin-lattice coupling in CrSiTe3. APL Mater, 3, 041515(2015).

    [70] J Lee, S Lee, J H Ryoo et al. Ising-type magnetic ordering in atomically thin FePS3. Nano Lett, 16, 7433(2016).

    [71] C Kuo, M Neumann, K Balamurugan et al. Exfoliation and Raman spectroscopic fingerprint of few-layer NiPS3 Van der Waals crystals. Sci Rep, 6, 20904(2016).

    [72] D C Freitas, R Weht, A Sulpice et al. Ferromagnetism in layered metastable 1T-CrTe2. J Phy: Condens Matter, 27, 176002(2015).

    [73] H E Stanley, T A Kaplan. Possibility of a phase transition for the two-dimensional Heisenberg model. Phys Rev Lett, 17, 913(1966).

    [74] J M Kosterlitz, D J Thouless. Ordering, metastability and phase transitions in two-dimensional systems. J Phys C, 6, 1181(1973).

    [75] J Fröhlich, E H Lieb. Existence of phase transitions for anisotropic Heisenberg models. Phys Rev Lett, 38, 440(1977).

    [76]

    [77]

    [78] Y Cao, V Fatemi, A Demir et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature, 556, 80(2018).

    [79] N Samarth. Condensed-matter physics: Magnetism in flatland. Nature, 546, 216(2017).

    [80] I Tsubokawa. On the magnetic properties of a CrBr3 single crystal. J Phys Soc Jpn, 15, 1664(1960).

    [81] W N Hansen. Some magnetic properties of the chromium (III) halides at 4.2°K. J Appl Phys, 30, S304(1959).

    [82] C Starr, F Bitter, A R Kaufmann. The magnetic properties of the iron group anhydrous chlorides at low temperatures. I. experimental. Phys Rev, 58, 977(1940).

    [83] W N Hansen, M Griffel. Heat capacities of CrF3 and CrCl3 from 15 to 300 K. J. Chem. Phys, 28, 902-907(1958).

    [84] J W Cable, M K Wilkinson, E O Wollan. Neutron diffraction investigation of antiferromagnetism in CrCl3. J Phys Chem Solids, 19, 29(1961).

    [85] K O Berry, R R Smardzewski, R E McCarley. Vaporization reactions of vanadium iodides and evidence for gaseous vanadium (IV) iodide. Inorg Chem, 8, 1994(1969).

    [86] H L Zhuang, Y Xie, P R C Kent et al. Computational discovery of ferromagnetic semiconducting single-layer CrSnTe3. Phys Rev B, 92, 035407(2015).

    [87] G Ouvrard, R Brec, J Rouxel. Structural determination of some MPS3 layered phases (M = Mn, Fe, Co, Ni and Cd). Mater Res Bull, 20, 1181(1985).

    [88] B Taylor, J Steger, A Wold et al. Preparation and properties of iron phosphorus triselenide, FePSe3. Inorg Chem, 13, 2719(1974).

    [89] J L Lado, J Fernández-Rossier. On the origin of magnetic anisotropy in two dimensional CrI3. 2D Mater, 4, 035002(2017).

    [90]

    [91] A R Wildes, V Simonet, E Ressouche et al. The magnetic properties and structure of the quasi-two-dimensional antiferromagnet CoPS3. J Phys: Condens Matter, 29, 455801(2017).

    [92] P A Joy, S Vasudevan. Magnetism in the layered transition-metal thiophosphates MPS3 (M = Mn, Fe, and Ni). Phys Rev B, 46, 5425(1992).

    [93] K Kurosawa, S Saito, Y Yamaguchi. Neutron diffraction study on MnPS3 and FePS3. J Phys Soc Jpn, 52, 3919(1983).

    [94] M Arai, R Moriya, N Yabuki et al. Construction of van der Waals magnetic tunnel junction using ferromagnetic layered dichalcogenide. Appl Phys Lett, 107, 103107(2015).

    [95] Z Wang, D Sapkota, T Taniguchi et al. Tunneling spin valves based on Fe3GeTe2/hBN/Fe3GeTe2 van der Waals heterostructures. Nano Lett, 18, 4303(2018).

    [96] T Song, X Cai, M W Tu et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science, 360, 1214(2018).

    [97] D R Klein, D MacNeill, J L Lado et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science, 360, 1218(2018).

    [98] H H Kim, B Yang, T Patel et al. One million percent tunnel magnetoresistance in a magnetic van der Waals heterostructure. Nano Lett, 85, 4890(2018).

    [99] Z Wang, I Gutiérrez-Lezama, N Ubrig et al. Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3. Nat Commun, 9, 2516(2018).

    [100]

    [101] F Amet, J R Wiliams, A G F Garcia et al. Tunneling spectroscopy of graphene-boron-nitride heterostructures. Phys Rev B, 85, 073405(2012).

    [102] E E Vdovin, A Mishchenko, M T Greenaway et al. Phonon-assisted resonant tunneling of electrons in graphene-boron nitride transistors. Phys Rev Lett, 116, 186603(2016).

    [103] S Jung, M Park, J Park et al. Vibrational properties of h-BN and h-BN-graphene heterostructures probed by inelastic electron tunneling spectroscopy. Sci Rep, 5, 16642(2015).

    [104] U Chandni, K Watanabe, T Taniguchi et al. Signatures of phonon and defect-assisted tunneling in planar metal-hexagonal boron nitride-graphene junctions. Nano Lett, 16, 7982(2016).

    [105] U Chandni, K Watanabe, T Taniguchi et al. Evidence for defect-mediated tunneling in hexagonal boron nitride-based junctions. Nano Lett, 15, 7329(2015).

    [106]

    [107] S Jiang, J Shan, K F Mak. Electric-field switching of two-dimensional van der Waals magnets. Nat Mater, 17, 406(2018).

    [108] S A Wolf, D D Awschalom, R A Buhrman et al. Spintronics: a spin-based electronics vision for the future. Science, 294, 1488(2001).

    [109] W Han, R K Kawakami, M Gmitra et al. Graphene spintronics. Nat Nanotechnol, 9, 794(2014).

    [110] W Xing, Y Chen, P M Odenthal et al. Electric field effect in multilayer Cr2Ge2Te6: a ferromagnetic 2D material. 2D Mater, 4, 024009(2017).

    [111] Q Yang, Z Zhou, L Wang et al. Ionic gel modulation of RKKY interactions in synthetic anti-ferromagnetic nanostructures for low power wearable spintronic devices. Adv Mater, 30, 1800449(2018).

    [112] B Cui, C Song, G A Gehring et al. Electrical manipulation of orbital occupancy and magnetic anisotropy in manganites. Adv Funct Mater, 25, 864(2015).

    [113] D Chiba, S Fukami, K Shimamura et al. Electrical control of the ferromagnetic phase transition in cobalt at room temperature. Nat Mater, 10, 853(2011).

    [114] Q Li, M Yang, C Gong et al. Patterning-induced ferromagnetism of Fe3GeTe2 van der Waals materials beyond room temperature. Nano Lett, 18, 5974(2018).

    [115] M I D'yakonov, V I Perel'. Possibility of orienting electron spin with current. Pis'ma Zh Éksp Teor Fiz, 13, 467(1971).

    [116] M I D'yakonov, V I Perel'. Current-induced spin orientation of electrons in semiconductors. Phys Lett A, 35, 459(1971).

    [117] J E Hirsch. Spin Hall effect. Phys Rev Lett, 83, 1834(1999).

    [118] S Zhang. Spin Hall effect in the presence of spin diffusion. Phys Rev Lett, 85, 393(2000).

    [119] T Jungwirth, J Wunderlich, K Olejník. Spin Hall effect devices. Nat Mater, 11, 382(2012).

    [120] J Sinova, S O Valenzuela, J Wunderlich et al. Spin Hall effects. Rev Mod Phys, 87, 1213(2015).

    [121] L Liu, C Pai, Y Li et al. Spin-torque switching with giant spin Hall effect of tantalum. Science, 336, 555(2012).

    [122] G Yu, P Upadhyaya, Y Fan et al. Switching of perpendicular magnetization by spin-orbit torques in the absence of external magnetic fields. Nat Nanotechnol, 9, 548(2014).

    [123] Ø Johansen, V Risinggård, A Sudbø et al. Current control of magnetism in two-dimensional Fe3GeTe2. Phys Rev Lett, 122, 217203(2019).

    [124]

    [125]

    [126] L Xie, X Cui. Manipulating spin-polaried photocurrents in 2D transition metal dichalcogenides. Proceedings of the National Academy of Sciences, 113, 3746(2016).

    [127] Q Tong, F Liu, X Xiao et al. Skyrmions in the moire of van der Waals 2D magnets. Nano Lett, 18, 7194(2018).

    [128] J Linder, H W A Robinson. Superconducting spintronics. Nat Phys, 11, 307(2015).

    [129] S Guo, H Man, K Wang et al. Ba(Zn,Co)2As2: A diluted ferromagnetic semiconductor with n-type carriers and isostructural to 122 iron-based superconductors. Phys Rev B, 99, 155201(2019).

    [130] S Guo, F Ning. Progress of novel diluted ferromagnetic semiconductors with decoupled spin and charge doping: Counterparts of Fe-based superconductors. Chin Phys B, 27, 097502(2018).

    [131] X Wang, H Wang, J Ma et al. Efficiently rotating the magnetization vector in a magnetic semiconductor via organic molecules. ACS Appl Mater Interfaces, 11, 6615(2019).

    [132] X Wang, H Wang, D Pan et al. Robust manipulation of magnetism in dilute magnetic semiconductor (Ga,Mn)As by organic molecules. Adv Mater, 27, 8043(2015).

    [133] L Chen, X Yang, F Yang et al. Enhancing the Curie temperature of ferromagnetic semiconductor (Ga,Mn)As to 200 K via nanostructure engineering. Nano Lett, 11, 2584(2011).

    [134] Y Cui, B Li, J Li et al. Chemical vapor deposition growth of two-dimensional heterojunctions. Sci Chin Phys, Mechan Astron, 61, 016801(2018).

    Xiaoxi Li, Baojuan Dong, Xingdan Sun, Hanwen Wang, Teng Yang, Guoqiang Yu, Zheng Vitto Han. Perspectives on exfoliated two-dimensional spintronics[J]. Journal of Semiconductors, 2019, 40(8): 081508
    Download Citation