• Photonics Research
  • Vol. 8, Issue 4, 528 (2020)
Kaiyuan Wang1、†, Xinshu Ren1、†, Weijie Chang1, Longhui Lu1, Deming Liu1, and Minming Zhang1、2、*
Author Affiliations
  • 1School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2Wuhan National Laboratory for Optoelectronics, Wuhan 430074, China
  • show less
    DOI: 10.1364/PRJ.383887 Cite this Article Set citation alerts
    Kaiyuan Wang, Xinshu Ren, Weijie Chang, Longhui Lu, Deming Liu, Minming Zhang. Inverse design of digital nanophotonic devices using the adjoint method[J]. Photonics Research, 2020, 8(4): 528 Copy Citation Text show less
    References

    [1] J. S. Jensen, O. Sigmund. Topology optimization for nano-photonics. Laser Photon. Rev., 5, 308-321(2011).

    [2] A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, J. Vučković. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer. Nat. Photonics, 9, 374-377(2015).

    [3] L. Su, A. Y. Piggott, N. V. Sapra, J. Petykiewicz, J. Vučković. Inverse design and demonstration of a compact on-chip narrowband three-channel wavelength demultiplexer. ACS Photon., 5, 301-305(2017).

    [4] D. Vercruysse, N. V. Sapra, L. Su, R. Trivedi, J. Vučković. Analytical level set fabrication constraints for inverse design. Sci. Rep., 9, 8999(2019).

    [5] C. M. Lalau-Keraly, S. Bhargava, O. D. Miller, E. Yablonovitch. Adjoint shape optimization applied to electromagnetic design. Opt. Express, 21, 21693-21701(2013).

    [6] L. Lu, D. Liu, F. Zhou, D. Li, M. Cheng, L. Deng, S. Fu, J. Xia, M. Zhang. Inverse-designed single-step-etched colorless 3-dB couplers based on RIE-lag-insensitive PhC-like subwavelength structures. Opt. Lett., 41, 5051-5054(2016).

    [7] K. Xu, L. Liu, X. Wen, W. Sun, N. Zhang, N. Yi, S. Sun, S. Xiao, Q. Song. Integrated photonic power divider with arbitrary power ratios. Opt. Lett., 42, 855-858(2017).

    [8] A. Y. Piggott, J. Petykiewicz, L. Su, J. Vučković. Fabrication-constrained nanophotonic inverse design. Sci. Rep., 7, 1786(2017).

    [9] Y. Deng, J. G. Korvink. Topology optimization for three-dimensional electromagnetic waves using an edge element-based finite-element method. Proc. R. Soc. A, 472, 20150835(2016).

    [10] B. Shen, P. Wang, R. Polson, R. Menon. An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint. Nat. Photonics, 9, 378-382(2015).

    [11] Z. Yu, H. Cui, X. Sun. Genetic-algorithm-optimized wideband on-chip polarization rotator with an ultrasmall footprint. Opt. Lett., 42, 3093-3096(2017).

    [12] L. F. Frellsen, Y. Ding, O. Sigmund, L. H. Frandsen. Topology optimized mode multiplexing in silicon-on-insulator photonic wire waveguides. Opt. Express, 24, 16866-16873(2016).

    [13] W. Chang, L. Lu, X. Ren, D. Li, Z. Pan, M. Cheng, D. Liu, M. Zhang. Ultra-compact mode (de)multiplexer based on subwavelength asymmetric Y-junction. Opt. Express, 26, 8162-8170(2018).

    [14] J. Lu, J. Vučković. Nanophotonic computational design. Opt. Express, 21, 13351-13367(2013).

    [15] H. Jia, T. Zhou, X. Fu, J. Ding, L. Yang. Inverse-design and demonstration of ultracompact silicon meta-structure mode exchange device. ACS Photon., 5, 1833-1838(2018).

    [16] B. Shen, R. Polson, R. Menon. Metamaterial-waveguide bends with effective bend radius <λ0/2. Opt. Lett., 40, 5750-5753(2015).

    [17] Z. Xie, T. Lei, F. Li, H. Qiu, Z. Zhang, H. Wang, C. Min, L. Du, Z. Li, X. Yuan. Ultra-broadband on-chip twisted light emitter for optical communications. Light Sci. Appl., 7, 18001-18006(2018).

    [18] R. E. Christiansena, J. Vester-Petersenb, S. P. Madsenb, O. Sigmund. A non-linear material interpolation for design of metallic nano-particles using topology optimization. Comput. Methods Appl. Mech. Engrg., 343, 23-29(2019).

    [19] M. H. Tahersima, K. Kojima, T. Koike-Akino, D. Jha, B. Wang, C. Lin, K. Parsons. Deep neural network inverse design of integrated photonic power splitters. Sci. Rep., 9, 1368(2019).

    [20] Y. Kiarashinejad, S. Abdollahramezani, M. Zandehshahvar, O. Hemmatyar, A. Adibi. Deep learning reveals underlying physics of light–matter interactions in nanophotonic devices. Adv. Theory Simul., 2, 1900088(2019).

    [21] Y. Kiarashinejad, M. Zandehshahvar, S. Abdollahramezani, O. Hemmatyar, R. Pourabolghasem, A. Adibi. Knowledge discovery in nanophotonics using geometric deep learning. Adv. Intell. Syst., 1, 1900132(2019).

    [22] A. M. Hammond, R. M. Camacho. Designing integrated photonic devices using artificial neural networks. Opt. Express, 27, 29620-29628(2019).

    [23] S. Chugh, S. Ghosh, A. Gulistan, B. M. A. Rahman. Machine learning regression approach to the nanophotonic waveguide analyses. J. Lightwave Technol., 37, 6080-6089(2019).

    CLP Journals

    [1] Yangming Ren, Lingxuan Zhang, Weiqiang Wang, Xinyu Wang, Yufang Lei, Yulong Xue, Xiaochen Sun, Wenfu Zhang. Genetic-algorithm-based deep neural networks for highly efficient photonic device design[J]. Photonics Research, 2021, 9(6): B247

    Kaiyuan Wang, Xinshu Ren, Weijie Chang, Longhui Lu, Deming Liu, Minming Zhang. Inverse design of digital nanophotonic devices using the adjoint method[J]. Photonics Research, 2020, 8(4): 528
    Download Citation