• Journal of Semiconductors
  • Vol. 43, Issue 5, 051201 (2022)
Wei Wen1、2, Yunlong Guo1、2, and Yunqi Liu1、2
Author Affiliations
  • 1Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.1088/1674-4926/43/5/051201 Cite this Article
    Wei Wen, Yunlong Guo, Yunqi Liu. Multifunctional neurosynaptic devices for human perception systems[J]. Journal of Semiconductors, 2022, 43(5): 051201 Copy Citation Text show less
    References

    [1] J V Neumann. First draft of a report on the EDVAC. IEEE Ann Hist Comput, 15, 27(1993).

    [2] D A Drachman. Do we have brain to spare. Neurology, 64, 2004(2005).

    [3] D Kuzum, S Yu, H S Wong. Synaptic electronics: materials, devices and applications. Nanotechnology, 24, 382001(2013).

    [4] Z Wang, L Wang, M Nagai et al. Nanoionics-enabled memristive devices: Strategies and materials for neuromorphic applications. Adv Electron Mater, 3, 1600510(2017).

    [5] Y van de Burgt, A Melianas, S T Keene et al. Organic electronics for neuromorphic computing. Nat Electron, 1, 386(2018).

    [6] J Zhu, T Zhang, Y Yang et al. A comprehensive review on emerging artificial neuromorphic devices. Appl Phys Rev, 7, 011312(2020).

    [7] L F Abbott, W G Regehr. Synaptic computation. Nature, 431, 796(2004).

    [8] J J Yang, M D Pickett, X Li et al. Memristive switching mechanism for metal/oxide/metal nanodevices. Nat Nanotechnol, 3, 429(2008).

    [9] W Sun, B Gao, M Chi et al. Understanding memristive switching via in situ characterization and device modeling. Nat Commun, 10, 3453(2019).

    [10] R Yang, K Terabe, G Liu et al. On-demand nanodevice with electrical and neuromorphic multifunction realized by local ion migration. ACS Nano, 6, 9515(2012).

    [11] S J Kim, S B Kim, H W Jang. Competing memristors for brain-inspired computing. iScience, 24, 101889(2021).

    [12] J F Scott, C A Paz de Araujo. Ferroelectric memories. Science, 246, 1400(1989).

    [13] S Dai, Y Zhao, Y Wang et al. Recent advances in transistor-based artificial synapses. Adv Funct Mater, 29, 1903700(2019).

    [14] L Van Tho, K J Baeg, Y Y Noh. Organic nano-floating-gate transistor memory with metal nanoparticles. Nano Converg, 3, 10(2016).

    [15] Y Ren, J Q Yang, L Zhou et al. Gate-tunable synaptic plasticity through controlled polarity of charge trapping in fullerene composites. Adv Funct Mater, 28, 1805599(2018).

    [16] Z C Liu, F L Xue, Y Su et al. Memory effect of a polymer thin-film transistor with self-assembled gold nanoparticles in the gate dielectric. IEEE Trans Nanotechnol, 5, 379(2006).

    [17] K J Baeg, Y Y Noh, H Sirringhaus et al. Controllable shifts in threshold voltage of top-gate polymer field-effect transistors for applications in organic nano floating gate memory. Adv Funct Mater, 20, 224(2010).

    [18] D V Talapin, J S Lee, M V Kovalenko et al. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem Rev, 110, 389(2010).

    [19] M Kang, K J Baeg, D Khim et al. Printed, flexible, organic nano-floating-gate memory: effects of metal nanoparticles and blocking dielectrics on memory characteristics. Adv Funct Mater, 23, 3503(2013).

    [20] W Wang, J Shi, D Ma. Organic thin-film transistor memory with nanoparticle floating gate. IEEE Trans Electron Devices, 56, 1036(2009).

    [21] R Joga. Quantum dot floating gate transistor with multi-wall carbon nano tube channel for non-volatile memory devices. 2012 International Conference on Communication Systems and Network Technologies, 774(2012).

    [22] S H Kim, K Hong, W Xie et al. Electrolyte-gated transistors for organic and printed electronics. Adv Mater, 25, 1822(2013).

    [23] W Xu, S Y Min, H Hwang et al. Organic core-sheath nanowire artificial synapses with femtojoule energy consumption. Sci Adv, 2, e1501326(2016).

    [24] S Yu. Neuro-inspired computing with emerging nonvolatile memorys. Proc IEEE, 106, 260(2018).

    [25] P Martins, S Lanceros-Méndez. Polymer-based magnetoelectric materials. Adv Funct Mater, 23, 3371(2013).

    [26] A F Benner, M Ignatowski, J A Kash et al. Exploitation of optical interconnects in future server architectures. IBM J Res Dev, 49, 755(2005).

    [27] D Rosenbluth, K Kravtsov, M P Fok et al. A high performance photonic pulse processing device. Opt Express, 17, 22767(2009).

    [28] E Kuramochi, K Nozaki, A Shinya et al. Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip. Nat Photonics, 8, 474(2014).

    [29] R Q Quiroga, L Reddy, G Kreiman et al. Invariant visual representation by single neurons in the human brain. Nature, 435, 1102(2005).

    [30] F Sun, Q Lu, S Feng et al. Flexible artificial sensory systems based on neuromorphic devices. ACS Nano, 15, 3875(2021).

    [31] J Zhang, S Dai, Y Zhao et al. Recent progress in photonic synapses for neuromorphic systems. Adv Intell Syst, 2, 1900136(2020).

    [32] S Chen, Z Lou, D Chen et al. An artificial flexible visual memory system based on an UV-motivated memristor. Adv Mater, 30, 1705400(2018).

    [33] Q B Zhu, B Li, D D Yang et al. A flexible ultrasensitive optoelectronic sensor array for neuromorphic vision systems. Nat Commun, 12, 1798(2021).

    [34]

    [35] S Zhao, R Zhu. Electronic skin with multifunction sensors based on thermosensation. Adv Mater, 29, 1606151(2017).

    [36] I You, D G Mackanic, N Matsuhisa et al. Artificial multimodal receptors based on ion relaxation dynamics. Science, 370, 961(2020).

    [37] M A Rahman, S Walia, S Naznee et al. Artificial somatosensors: Feedback receptors for electronic skins. Adv Intell Syst, 2, 2000094(2020).

    [38] T Zhao, C Zheng, H He et al. A self-powered biosensing electronic-skin for real-time sweat Ca2+ detection and wireless data transmission. Smart Mater Struct 2019, 28, 15(0850).

    [39] H Huang, L Han, X Fu et al. Multiple stimuli responsive and identifiable zwitterionic ionic conductive hydrogel for bionic electronic skin. Adv Electron Mater, 6, 2000239(2020).

    [40] X Yuan, X Gao, X Shen et al. A 3D-printed, alternatively tilt-polarized PVDF-TrFE polymer with enhanced piezoelectric effect for self-powered sensor application. Nano Energy, 85, 105985(2021).

    [41] K Sanderson. Electronic skin: from flexibility to a sense of touch. Nature, 591, 685(2021).

    [42] Y Kim, A Chortos, W Xu et al. A bioinspired flexible organic artificial afferent nerve. Science, 360, 998(2018).

    [43] Y R Lee, T Q Trung, B U Hwang et al. A flexible artificial intrinsic-synaptic tactile sensory organ. Nat Commun, 11, 2753(2020).

    [44]

    [45]

    [46]

    [47] X Ji, X Zhao, M C Tan et al. Artificial perception built on memristive system: Visual, auditory, and tactile sensations. Adv Intell Syst, 2, 1900118(2020).

    [48] Y Liu, E Li, X Wang et al. Self-powered artificial auditory pathway for intelligent neuromorphic computing and sound detection. Nano Energy, 78, 105403(2020).

    [49] D G Seo, Y Lee, G T Go et al. Versatile neuromorphic electronics by modulating synaptic decay of single organic synaptic transistor: From artificial neural networks to neuro-prosthetics. Nano Energy, 65, 104035(2019).

    [50] B P Trivedi. Gustatory system: the finer points of taste. Nature, 486, S2(2012).

    [51]

    [52] S Zhang, K Guo, L Sun et al. Selective release of different neurotransmitters emulated by a p-i-n junction synaptic transistor for environment-responsive action control. Adv Mater, 33, e2007350(2021).

    [53] K C Hoover. Smell with inspiration: the evolutionary significance of olfaction. Am J Phys Anthropol, 53, 63(2010).

    [54] T Wang, H M Huang, X X Wang et al. An artificial olfactory inference system based on memristive devices. InfoMat, 3, 804(2021).

    [55] M Li, J Deng, X Wang et al. Flexible printed single-walled carbon nanotubes olfactory synaptic transistors with crosslinked poly(4-vinylphenol) as dielectrics. Flex Print Electron, 6, 034001(2021).

    [56] H Wang, Q Zhao, Z Ni et al. A ferroelectric/electrochemical modulated organic synapse for ultraflexible, artificial visual-perception system. Adv Mater, 30, e1803961(2018).

    [57] Y van de Burgt, E Lubberman, E J Fuller et al. A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat Mater, 16, 414(2017).

    [58] H Wang, H Liu, Q Zhao et al. A retina-like dual band organic photosensor array for filter-free near-infrared-to-memory operations. Adv Mater, 29, 1701772(2017).

    [59] C S Yang, D S Shang, N Liu et al. All-solid-state synaptic transistor with ultralow conductance for neuromorphic computing. Adv Funct Mater, 28, 1804170(2018).

    [60] S Seo, S H Jo, S Kim et al. Artificial optic-neural synapse for colored and color-mixed pattern recognition. Nat Commun, 9, 5106(2018).

    [61] S M Kwon, S W Cho, M Kim et al. Environment-adaptable artificial visual perception behaviors using a light-adjustable optoelectronic neuromorphic device array. Adv Mater, 31, e1906433(2019).

    [62] M K Kim, J S Lee. Ferroelectric analog synaptic transistors. Nano Lett, 19, 2044(2019).

    [63] Z Lv, M Chen, F Qian et al. Mimicking neuroplasticity in a hybrid biopolymer transistor by dual modes modulation. Adv Funct Mater, 29, 1902374(2019).

    [64] J Sun, S Oh, Y Choi et al. Optoelectronic synapse based on IGZO-alkylated graphene oxide hybrid structure. Adv Funct Mater, 28, 1804397(2018).

    [65] S Kim, B Choi, M Lim et al. Pattern recognition using carbon nanotube synaptic transistors with an adjustable weight update protocol. ACS Nano, 11, 2814(2017).

    [66] S Ham, S Choi, H Cho et al. Photonic organolead halide perovskite artificial synapse capable of accelerated learning at low power inspired by dopamine-facilitated synaptic activity. Adv Funct Mater, 29, 1806646(2019).

    [67] Y Zang, H Shen, D Huang et al. A dual-organic-transistor-based tactile-perception system with signal-processing functionality. Adv Mater, 29, 1606088(2017).

    [68] Y Chen, G Gao, J Zhao et al. Piezotronic graphene artificial sensory synapse. Adv Funct Mater, 29, 1900959(2019).

    [69] L Sun, Y Zhang, G Hwang et al. Synaptic computation enabled by Joule heating of single-layered semiconductors for sound localization. Nano Lett, 18, 3229(2018).

    [70] Z Song, Y Tong, X Zhao et al. A flexible conformable artificial organ-damage memory system towards hazardous gas leakage based on a single organic transistor. Mater Horiz, 6, 717(2019).

    [71] Y Yu, Q Ma, H Ling et al. Small-molecule-based organic field-effect transistor for nonvolatile memory and artificial synapse. Adv Funct Mater, 29, 1904602(2019).

    [72] X Han, Z Xu, W Wu et al. Recent progress in optoelectronic synapses for artificial visual-perception system. Small Struct, 1, 2000029(2020).

    [73] L Shao, Y Zhao, Y Liu. Organic synaptic transistors: The evolutionary path from memory cells to the application of artificial neural networks. Adv Funct Mater, 31, 2101951(2021).

    Wei Wen, Yunlong Guo, Yunqi Liu. Multifunctional neurosynaptic devices for human perception systems[J]. Journal of Semiconductors, 2022, 43(5): 051201
    Download Citation