• Photonics Research
  • Vol. 10, Issue 7, 1575 (2022)
Kaili Sun1、†, Hui Jiang1、†, Dmitry A. Bykov2, Vien Van3, Uriel Levy4, Yangjian Cai1, and Zhanghua Han1、*
Author Affiliations
  • 1Shandong Provincial Key Laboratory of Optics and Photonic Devices, Center of Light Manipulation and Applications, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
  • 2Image Processing Systems Institute—Branch of the Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Samara 443001, Russia
  • 3Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 2V4, Canada
  • 4Department of Applied Physics, and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, Israel
  • show less
    DOI: 10.1364/PRJ.456260 Cite this Article Set citation alerts
    Kaili Sun, Hui Jiang, Dmitry A. Bykov, Vien Van, Uriel Levy, Yangjian Cai, Zhanghua Han. 1D quasi-bound states in the continuum with large operation bandwidth in the ωk space for nonlinear optical applications[J]. Photonics Research, 2022, 10(7): 1575 Copy Citation Text show less
    References

    [1] J. von Neumann, E. Wigner. Uber merkwiirdige diskrete Eigenwerte. Phys. Z, 30, 465-467(1929).

    [2] C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, M. Soljacic. Bound states in the continuum. Nat. Rev. Mater., 1, 16048(2016).

    [3] Y. X. Xiao, G. Ma, Z. Q. Zhang, C. T. Chan. Topological subspace-induced bound state in the continuum. Phys. Rev. Lett., 118, 166803(2017).

    [4] F. Capasso, C. Sirtori, J. Faist, D. L. Sivco, A. Y. Cho. Observation of an electronic bound state above a potential well. Nature, 358, 565-567(1992).

    [5] A. Albo, D. Fekete, G. Bahir. Electronic bound states in the continuum above (Ga,In)(As,N)/(Al,Ga)As quantum wells. Phys. Rev. B, 85, 115307(2012).

    [6] C. Álvarez, F. Domínguez-Adame, P. A. Orellana, E. Díaz. Impact of electron-vibron interaction on the bound states in the continuum. Phys. Lett. A, 379, 1062-1066(2015).

    [7] T. Lepetit, E. Akmansoy, J. P. Ganne, J. M. Lourtioz. Resonance continuum coupling in high-permittivity dielectric metamaterials. Phys. Rev. B, 82, 195307(2010).

    [8] T. Lepetit, B. Kanté. Controlling multipolar radiation with symmetries for electromagnetic bound states in the continuum. Phys. Rev. B, 90, 241103(2014).

    [9] D. C. Marinica, A. G. Borisov, S. V. Shabanov. Bound states in the continuum in photonics. Phys. Rev. Lett., 100, 183902(2008).

    [10] H. Friedrich, D. Wintgen. Interfering resonances and bound states in the continuum. Phys. Rev. A, 32, 3231-3242(1985).

    [11] S. I. Azzam, V. M. Shalaev, A. Boltasseva, A. V. Kildishev. Formation of bound states in the continuum in hybrid plasmonic-photonic systems. Phys. Rev. Lett., 121, 253901(2018).

    [12] D. A. Bykov, E. A. Bezus, L. L. Doskolovich. Coupled-wave formalism for bound states in the continuum in guided-mode resonant gratings. Phys. Rev. A, 99, 063805(2019).

    [13] K. Sun, Y. Cai, Z. Han. A novel mid-infrared thermal emitter with ultra-narrow bandwidth and large spectral tunability based on the bound state in the continuum. J. Phys. D, 55, 025104(2022).

    [14] Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, M. Segev. Experimental observation of optical bound states in the continuum. Phys. Rev. Lett., 107, 28-31(2011).

    [15] E. N. Bulgakov, A. F. Sadreev. Robust bound state in the continuum in a nonlinear microcavity embedded in a photonic crystal waveguide. Opt. Lett., 39, 5212-5215(2014).

    [16] M. Minkov, I. A. D. Williamson, M. Xiao, S. Fan. Zero-index bound states in the continuum. Phys. Rev. Lett., 121, 263901(2018).

    [17] L. Vertchenko, C. DeVault, R. Malureanu, E. Mazur, A. Lavrinenko. Near-zero index photonic crystals with directive bound states in the continuum. Laser Photon. Rev., 15, 2000559(2021).

    [18] C. L. Zou, J. M. Cui, F. W. Sun, X. Xiong, X. B. Zou, Z. F. Han, G. C. Guo. Guiding light through optical bound states in the continuum for ultrahigh-Q microresonators. Laser Photon. Rev., 9, 114-119(2015).

    [19] Z. Yu, X. Xi, J. Ma, H. K. Tsang, C.-L. Zou, X. Sun. Photonic integrated circuits with bound states in the continuum. Optica, 6, 1342-1348(2019).

    [20] K. Koshelev, Y. Tang, K. Li, D. Y. Choi, G. Li, Y. Kivshar. Nonlinear metasurfaces governed by bound states in the continuum. ACS Photon., 6, 1639-1644(2019).

    [21] A. S. Kupriianov, Y. Xu, A. Sayanskiy, V. Dmitriev, Y. S. Kivshar, V. R. Tuz. Metasurface engineering through bound states in the continuum. Phys. Rev. Appl., 12, 014024(2019).

    [22] S. T. Ha, Y. H. Fu, N. K. Emani, Z. Pan, R. M. Bakker, R. Paniagua-Domínguez, A. I. Kuznetsov. Directional lasing in resonant semiconductor nanoantenna arrays. Nat. Nanotechnol., 13, 1042-1047(2018).

    [23] Y. Wang, Z. Han, Y. Du, J. Qin. Ultrasensitive terahertz sensing with high-Q toroidal dipole resonance governed by bound states in the continuum in all-dielectric metasurface. Nanophotonics, 10, 1295-1307(2021).

    [24] S. Romano, G. Zito, S. Managò, G. Calafiore, E. Penzo, S. Cabrini, A. C. De Luca, V. Mocella. Surface-enhanced Raman and fluorescence spectroscopy with an all-dielectric metasurface. J. Phys. Chem. C, 122, 19738-19745(2018).

    [25] Z. Han, F. Ding, Y. Cai, U. Levy. Significantly enhanced second-harmonic generations with all-dielectric antenna array working in the quasi-bound states in the continuum and excited by linearly polarized plane waves. Nanophotonics, 10, 1189-1196(2021).

    [26] E. N. Bulgakov, A. F. Sadreev. Propagating Bloch bound states with orbital angular momentum above the light line in the array of dielectric spheres. J. Opt. Soc. Am. A, 34, 949-952(2017).

    [27] K. L. Koshelev, S. K. Sychev, Z. F. Sadrieva, A. A. Bogdanov, I. V. Iorsh. Strong coupling between excitons in transition metal dichalcogenides and optical bound states in the continuum. Phys. Rev. B, 98, 161113(2018).

    [28] L. Carletti, K. Koshelev, C. De Angelis, Y. Kivshar. Giant nonlinear response at the nanoscale driven by bound states in the continuum. Phys. Rev. Lett., 121, 33903(2018).

    [29] L. Jin, Z. Liu, J. Li, S. Lan, J. Liu, J. Liu, Y. Xu. High-Q quasibound states in the continuum for nonlinear metasurfaces. Phys. Rev. Lett., 123, 253901(2019).

    [30] G. Quaranta, G. Basset, O. J. F. Martin, B. Gallinet. Recent advances in resonant waveguide gratings. Laser Photon. Rev., 12, 1800017(2018).

    [31] K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, Y. Kivshar. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum. Phys. Rev. Lett., 121, 193903(2018).

    [32] D. A. Bykov, L. L. Doskolovich. Spatiotemporal coupled-mode theory of guided-mode resonant gratings. Opt. Express, 23, 19234-19241(2015).

    [33] S. Fan, W. Suh, J. D. Joannopoulos. Temporal coupled-mode theory for the Fano resonance in optical resonators. J. Opt. Soc. Am. A, 20, 569-572(2003).

    [34] L. Kang, H. Bao, D. H. Werner. Efficient second-harmonic generation in high Q-factor asymmetric lithium niobate metasurfaces. Opt. Lett., 46, 633-636(2021).

    Kaili Sun, Hui Jiang, Dmitry A. Bykov, Vien Van, Uriel Levy, Yangjian Cai, Zhanghua Han. 1D quasi-bound states in the continuum with large operation bandwidth in the ωk space for nonlinear optical applications[J]. Photonics Research, 2022, 10(7): 1575
    Download Citation