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The phenomenon of bound state in the continuum (BIC) with an infinite quality factor and lifetime has
emerged in recent years in photonics as a new tool to manipulate light–matter interactions. However, most
of the investigated structures only support BIC resonances at very few discrete points in the ω∼k space.
Even when the BIC is switched to a quasi-BIC (QBIC) resonance through perturbation, its frequency will still
be located within a narrow spectral band close to that of the original BIC, restricting their applications in many
fields where random or multiple input frequencies beyond the narrow band are required. In this work, we dem-
onstrate that a new set of QBIC resonances can be supported by using a special binary grating consisting of two
alternatingly aligned ridge arrays with the same period and zero-approaching ridge width difference on a slab
waveguide. These QBIC resonances are distributed continuously over a broad band along a line in the ω∼k space
and can thus be considered as 1D QBICs. With the Q factors generally affected by the ridge difference, it is now
possible to arbitrarily choose any frequencies on the dispersion line to achieve significantly enhanced light–matter
interactions, facilitating many applications where multiple input wavelengths are required; e.g., sum or difference
frequency generations in nonlinear optics. © 2022 Chinese Laser Press

https://doi.org/10.1364/PRJ.456260

1. INTRODUCTION

The concept of bound state in the continuum (BIC) was first
proposed in quantum mechanics by von Neumann andWigner
in 1929 [1], predicting the existence of localized eigenstates of
the single-particle Schrödinger equation embedded in the con-
tinuum of eigenvalue state solutions. This counterintuitive ob-
servation is of fundamental importance in quantum mechanics.
Over the years, the phenomenon of BIC has also been popu-
larized and extensively studied in various fields, like acoustics
[2,3], electronics [4–6], and microwaves [7,8]. In 2008, the
concept of BIC was further extended to optical systems for
the first time by Marinica et al. [9], and has since become a
new approach to enhance light–matter interactions. The main
idea of BIC is the elimination of the coupling between the res-
onant modes and all radiation channels in the surrounding
space. There are two main approaches to achieve BICs. The
first is the so-called symmetry protection, which generates BIC
at the Γ point in the reciprocal space, and it is based on the

symmetry incompatibility between the bound state and the
continuum. A bound state of one symmetry class can be em-
bedded in a continuum of another orthogonal symmetry class,
and their coupling is forbidden when there is a zero overlap
integral between the modes of different symmetry properties.
The other type is due to the accidental disappearance of the
coupling coefficient with the radiated waves by a successive
tuning of one or more system parameters, resulting in the for-
mation of the so-called accidental BIC, which is typically ob-
served away from the Γ-point and is therefore also known as
off-Γ BIC. The accidental BICs can be explained by the de-
structive interference of two or more leaking waves, where the
radiation from the leaking waves is tuned to cancel each other
out completely, a mechanism also known as the Friedrich–
Wintgen scenario [10]. Two resonances are usually involved
in the accidental BIC and, due to the strong coupling between
the two resonances, an avoided crossing behavior is usually
accompanied [11].
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In optics and photonics, researchers have realized both sym-
metry-protected BICs and accidental BICs, as well as QBIC
resonances with finite Q factors and an easier excitation re-
quirement by introducing some geometrical perturbations in
a variety of structures, including gratings [11–13], waveguide
arrays [14,15], photonic crystals with near-zero refractive
indexes [16,17], integrated photonic circuits [18,19], and
metasurfaces [20,21]. A range of amazing properties and appli-
cations have been achieved to date with photonic QBICs in
applications such as lasing [22], sensing [23] and Raman spec-
troscopy [24], and the application of QBIC in nonlinear optics
[25], twisted light [26], and light–matter interaction [27] is
being actively investigated. Unfortunately, most of the reported
BICs only occur at very few discrete points in ω ∼ k space for a
given structure geometry. This is true for both the symmetry-
protected and accidental types of BIC. When the ideal BIC is
switched to a QBIC resonance, its frequency remains within a
narrow spectral band tightly close to that of the original BIC,
even at a highly different k wavevector away from the BIC
point in the ω ∼ k space. As a result, the enhanced light–matter
interactions can only be achieved within the narrow band for a
specific geometry, restricting the applications of BIC in many
circumstances where it is required to tune the working fre-
quency or to have multiple inputs beyond the band. As a result,
most of the BIC applications in nonlinear optics reported to
date are focused on higher harmonic generation [28,29], where
only a single light beam at the fundamental frequency is in-
volved. The ultrahigh local electric field enhancement associ-
ated with the QBIC resonances significantly improves the
nonlinear conversion efficiency [25]. However, there are many
circumstances in nonlinear optics where the generation of the
target signal frequency requires two or more different input
frequencies; e.g., in sum frequency generation (SFG) or differ-
ence frequency generation (DFG). To obtain the utmost
enhancement based on the BIC effect, all the input frequencies
must be at the QBIC resonances. Unfortunately, significant re-
strictions emerge with a conventional QBIC because, in those
applications, the input frequencies may not be within the nar-
row operation band of QBIC resonance supported by a struc-
ture. The situation becomes even worse if there is a need for
spectral tunability of the target signal frequency.

In this work, we demonstrate that a binary grating com-
posed of two ridge arrays with the same period and different
ridge width on a slab waveguide structure supports a new
set of QBIC resonances and can address the above challenges.
We note that a similar structure with regular uniform ridge gra-
ting supports the ideal BIC at a normal incidence and the
QBIC at an inclined incidence, both at a fixed and limited
number of frequencies [12]. In contrast, these QBIC resonan-
ces supported by the binary grating are distributed continu-
ously along a line over a large spectral range in the ω ∼ k
space and thus can be considered as 1D QBIC. Using the 1D
QBIC supported by a structure with a fixed geometry, it is now
possible to arbitrarily choose any frequency within a broad
range to achieve enhanced light–matter interactions. This im-
portant feature greatly promotes many applications that
require multiple input wavelengths, such as SFG or DFG,

and is expected to significantly push forward the use of
QBIC in applications such as nonlinear optics.

2. STRUCTURE AND RESULTS

A. Dispersion and Q Factors
Figure 1 shows a schematic sketch of the investigated structure
that supports the 1D QBICs. The red dashed box in the inset
shows a magnified side view of the unit cell. To demonstrate
the working principle, Si (dark grey area, refractive index 3.45)
is first assumed in this section as the constituent material for
both the slab waveguide and ridges on the substrate of SiO2

(blue area, refractive index 1.45). To achieve the QBIC effect
in the telecom band, we deliberately adjusted the period P to
540 nm, and chose t � 220 nm as in the standard silicon on
insulator (SOI) wafer specification. For the topmost grating
layer, we take the width of one ridge as w � 50 nm and define
another as w� δ by introducing the deviation variable δ, both
with a height h of 60 nm. For the sake of simplicity and the ease
of calculation, it is assumed that all materials are dispersionless.
The red arrows in Fig. 1 represent the incident, reflected, and
transmitted light beams. Without losing generality, we consider
only TE polarization with the electric field parallel to the y di-
rection and the incident beam is within the xz plane onto the
structure at an angle of θ with respect to the z axis. Similar
results and conclusions can be obtained as well for the TM
polarization. A finite-element method based commercial soft-
ware from COMSOLMultiphysics together with Floquet peri-
odic boundary conditions in the x direction and perfectly
matched layers (PMLs) in the z direction is used for all the
calculations.

When the ridge width difference δ is nonzero, the binary
grating has a period of P to accommodate two ridges within
one unit cell and the well-known phenomenon of guided-mode
resonance (GMR) [30] is achieved, exhibiting a sharp dip in the
transmission spectrum when the following phase-matching
condition is satisfied:

k0 sin θ� m
2π

P
� k0neff , (1)

Fig. 1. Schematic diagram of the structure supporting the 1D
QBICs. The inset presents a magnified view of the grating unit cell,
which is assumed to extend infinitely along the y direction. The red
beams indicate the incident, reflected, and transmitted light.
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where θ is the incidence angle, k0 is the wavenumber in vac-
uum, neff is the effective index of guided mode within the slab
waveguide, and m is the order of diffraction by the grating. For
simplicity, we only consider the �1 diffraction orders in this
paper. To demonstrate that the binary grating structure with
a nonzero δ supports the QBIC resonances, in Fig. 2(a), we
first show the calculated dispersion properties of the resonances
in the ω ∼ k space with a special δ value of 10 nm. The dashed
line represents the dispersion of light in air, above which it is the
continuum region of radiation. One can also observe that there
are two branches of resonances in Fig. 2(a), which arise from
the excitation of guided modes counterpropagating toward two
different directions in the waveguide. The relative positions of
those resonances above the light line confirm the leaky charac-
teristics of these resonances. We are more interested in the
high-frequency branch of the two bands, which has a resonance
at the Γ point [as illustrated by the dashed circle in Fig. 2(a)]
with a Q factor of infinity. Keeping δ at 10 nm, we further
present in Fig. 2(b) the dependence of the calculated Q factor
on the incident angle for resonances on this branch. It is found
that the Q factor increases significantly with a decrease in the
incident angle and approaches infinity at normal incidence,
suggesting the state of an ideal BIC. Considering the symmetry
of the binary grating cross the central plane of either ridge, we
believe this ideal BIC resonance belongs to the symmetry-
protected type. The finite, yet ultrahigh level of Q factors at
nonzero incident angles suggest that other resonances on the
same branch can be considered as QBIC resonances. In contrast
to conventional QBIC resonances that are due to some struc-
tural perturbations introduced into the geometry, these QBIC
resonances result instead from the perturbation in the incident
angle. We should note that the spectral positions of these
QBIC resonances are still governed by Eq. (1). As a result, these

QBIC resonances have a dispersion curve that covers a much
larger bandwidth, giving rise to the terminology of 1D QBIC
resonances. For conventional QBIC resonances supported by
resonating metasurface elements, although a continuous distri-
bution of ω ∼ k dependence can also be found [25,29], the
dispersion curve is much flatter within a much narrower spec-
tral band. We note that the other branch of low-frequency res-
onances shown by the red line in Fig. 2(a), although still
representing leaky modes with ultrahigh Q factors, is not re-
ferred to as the QBIC resonances here because they do not
originate from the perturbations either in the incident angle
or in the structural geometry. As a result, only the resonances
on the high-frequency branch will be discussed here.

The fact that the spectral positions of 1D QBIC and the
corresponding incident angles are still determined by Eq. (1)
suggests that these 1D QBICs can also be considered as GMRs.
It is well-known that a regular GMR effect can generate a sharp
resonance effect with a large Q factor [30]. To have a straight-
forward comparison between the GMR and the 1D QBIC ef-
fects supported by a conventional ridge grating and the binary
grating, respectively, Fig. 2(c) shows the transmission spectrum
at the same incident angle 2° for both the GMR (red line) and
the QBIC (black line) with the inset showing the structure
schematics for the two cases. Here, δ is still chosen as 10 nm
for the binary grating. It is clearly shown that a much sharper
transmission dip is presented for the QBIC resonance than for
the GMR. Detailed calculations show that the QBIC resonance
has a Q factor higher than 104 and is two orders of magnitude
higher than that of the GMR shown in the same figure.

The above results are obtained with a δ value of 10 nm.
Actually, the general Q factor of the 1D QBIC resonances over
a large bandwidth can be significantly affected by the level of
asymmetry between the two ridges. The dependence of reso-
nance Q factor on δ at two random incident angles of 3°
and 5° is calculated and presented in Fig. 2(d). It is quite evi-
dent that the general Q factor increases with a decrease in the
ridge asymmetry. A polynomial fitting of theQ values as a func-
tion of δ is shown in the inset of Fig. 2(d), and an inversely
quadratic dependence of Q versus δ is found, in a similar
way to the QBIC resonances supported by asymmetric meta-
surfaces [31]. Actually, the same behavior works for any inci-
dent angle. When δ is nonzero yet small, the 1D QBIC
resonances with finite yet ultrahigh Q factors can be excited.
One can choose any wavelength within a broad spectral range
to have the QBIC resonance, whose Q factor can be further
controlled by choosing a proper deviation of δ from 0.
These 1D QBIC resonances are of special importance for real
applications, thanks to the benefit of the relieved excitation re-
quirement while the local enhancement of electromagnetic
fields is weakly affected.

B. Coupled-Mode Theory
The behavior above in Fig. 2 can be actually theoretically ex-
plained within the framework of the coupled-mode theory. As
we described above, the Q factor of the QBIC depends on both
the incidence angle θ and ridge width difference δ. Here, we
adopt the spatiotemporal formulation of this theory for the gra-
tings presented in Ref. [32], and write the homogeneous
coupled-mode equations as

Fig. 2. (a) Band structure of the BIC/QBIC mode supported by the
binary grating waveguide structure when δ is 10 nm. The dotted line
represents the light line in the free space. (b) Q factor as a function of
incident angle for the QBIC resonances at δ � 10 nm. (c) The trans-
mission spectra of a regular grating structure GMR (red line) and
binary gratings (black line) both at incident angle of 2°.
(d) Dependence of resonance Q factor on the ridge width difference
δ, at two incident angles of 3° (diamond) and 5° (circle), respectively.
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� ∂u
∂t � −vg ∂u

∂x � c1u� c2v;
∂v
∂t � vg ∂v

∂x � c1v � c2u:
(2)

Here, u and v define the amplitudes of the two counterpro-
pagating modes of the slab layer; vg is the group velocity of
these modes, and c1 and c2 are the coupling coefficients.
Making use of the energy conservation law [33] we can show
that i�c1 − c2� is real for lossless structures.

Taking the Fourier transform of Eq. (2), we can arrive at the
system of linear equations having nontrivial solutions when

v2g k2x � �ω − ωp1��ω − ωp2�, (3)

where kx � k0 sin θ and ω � 2πc∕λ are the wave number and
angular frequency of the incident light; ωp1 � i�c1 � c2� is the
complex frequency of the symmetric mode at the bottom of the
red line in Fig. 3(d); and ωp2 � i�c1 − c2� is the real frequency
of the antisymmetric mode marked by “a”. Equation (2) is the
dispersion equation describing the hyperbola-like dispersion
law seen in Fig. 3(d).

Note that all the parameters used in Eqs. (2) and (3) depend
on the ridge width difference δ. For the considered structure, it
is the dependence of Im�ωp1� on δ that is the most important.
As we demonstrated previously, the eigenmodes of the structure
are not excited at δ � 0. Therefore, the frequency ωp1 of the
symmetric mode is real at δ � 0, and Im�ωp1� ≈ δ · α, where
α is a real parameter. When δ is zero, all coefficients in
Eq. (3) become real and we obtain the dispersion law for
the 1D QBIC: v2g k2x � �ω − Re�ωp1���ω − ωp2�. When the
ridge width difference is nonzero, we can solve Eq. (3) with
respect to the complex frequency ω and obtain the Q factor
Q � Re �ω�∕�−2 Im �ω�� of the QBIC.

C. Transmission Spectra
We further investigate the properties of the 1D QBIC resonan-
ces by studying the transmission spectra of the binary grating at
different incidence angles. For the binary grating structure with
δ � 10 nm, in Fig. 3(d) we present the calculated resonance
wavelength versus incident angle. When the incident angle in-
creases, the high-frequency branch undergoes a blue shift, while
the other branch experiences a red shift to the opposite direc-
tion. These trends suggest that the low-frequency branch re-
sults from the grating excitation with m � −1 while the
other branch is with m � 1 in Eq. (1). We choose three points
in Fig. 3(d) marked a to c to demonstrate the formation of
BIC/QBIC modes for different cases, where “a” corresponds
to the resonances at normal incidence, while “b” and “c” cor-
respond, respectively, to two randomly selected incident angles
of 3.5° and 5°. We present both the transmission spectrum and
the field distributions, respectively, around these three points
in Figs. 3(a)–3(c).

Point “a” has a completely different property compared to
other points. Eigenfrequency analysis demonstrates that a res-
onance with an infiniteQ factor can be found at this point. The
transmission spectrum calculations also show that this reso-
nance cannot be excited by a plane wave at normal incidence.
In Fig. 3(a), the mode distribution is obtained from the eigen-
frequency analysis. These results suggest that point “a” corre-
sponds to the occurrence of an ideal BIC resonance.
Although there is a slight level of structural asymmetry between
the ridges (δ � 10 nm), the whole structure is still symmetric if
one uses a vertical plane across the center of either ridge. So the
resonance at point “a” is an ideal BIC of the symmetry-
protected type, and thus cannot be excited by a plane wave
at normal incidence. It is seen from the inset of Fig. 3(a) that
the electric field is mainly concentrated within the waveguide
layer and located between the grating ridge intervals; therefore,
it is distributed with perfect antisymmetry. Judging from the
same E field distributions at higher incident angels [cf. the inset
in Figs. 3(a)–3(c)], we believe any other points along the same
band away from position “a” can be interpreted as QBIC res-
onances that result from a perturbation in the incident angle
from the symmetry-protected BIC at position “a”. As a result,
the QBIC resonance in this high-frequency branch typically has
a Q factor that decreases with an increase in the incident angle.
For a larger incident angle, the wavelength of the QBIC has a
blue shift. For example, when the incident angle is 3.5°/5°, the
QBIC wavelength decreases from the BIC wavelength of
1522.8 nm to 1505.5 nm/1494.9 nm, as marked by points
“b” and “c”. Since a larger incident angle means a higher per-
turbation from normal incidence, the corresponding Q factor
drops slightly, which is consistent with the result in Fig. 2(b).
As shown in the insets of Figs. 3(b) and 3(c), the power flow
propagates from the left to the right side of one unit cell, along
the same direction as the incident beam, which corresponds to
the grating diffraction order m to be 1.

3. SFG AS AN EXAMPLE OF APPLICATION

To demonstrate that it is possible to randomly select any in-
cident wavelength within a specific range and generate the light
in the desired spectral range with a larger freedom of choice by

Fig. 3. (a)–(c) Local transmission spectrum close to the three posi-
tions marked in (d), with the inset showing the field distribution of the
real part of Ey [the inset of (a) is obtained from eigenfrequency analy-
sis] and the white arrows representing the vectorial distributions of the
Poynting vector. The black arrows in each figure indicate incidence,
reflection, and transmission, respectively. (d) The relationship between
the resonant wavelength of BIC/QBIC modes and the incident angle
in the binary grating structure. The three circles of a, b, and c represent
the BIC/QBIC modes at different angles.

1578 Vol. 10, No. 7 / July 2022 / Photonics Research Research Article



using the 1D QBIC resonances, we choose the process of SFG
as a simple example. Here an x-cut (the optical axis is along y
direction) LiNbO3 film structure is employed to make use of its
relatively high second-order nonlinear susceptibility along the
TE polarization. The structure is schematically shown in the
inset of Fig. 4(a) and its geometrical parameters are adjusted
due to a smaller refractive index (no � 2.22, ne � 2.14) of
LiNbO3 compared to Si. Figure 4(a) presents the calculated
transmission spectra for TE polarization at three different in-
cident angles. It is apparent that a sharp resonance is associated
with each incident angle, and the resonance has a blue shift and
slightly increasing bandwidth at a larger incident angle. We
note that these resonances belong to the short-wavelength
branch, as shown in Fig. 3(a).

The SFG enhancement is most significant when both inci-
dent wavelengths match a certain QBIC resonance. We first
choose one incident plane wave with a fixed wavelength of
λ1 � 1490.665 nm at the incident angle of 2°. The second in-
cident beam has an incident angle of 3° while its wavelength λ2
is continuously scanned. Both the incident plane waves are as-
sumed to have an electric field amplitude of 1 × 106 V∕m, cor-
responding to an intensity of 0.133 MW∕cm2 in a vacuum.
The SFG is calculated using the FEM method by only consid-
ering the d 33 value of LiNbO3 as −41.7 pm∕V [34]. This sim-
plification is valid because d 33 is one order of magnitude higher
than the other components and is the dominant factor in the
second-order nonlinear process. As shown in Fig. 4(b), the SFG
is most significant when λ2 is tuned as 1478.818 nm, which is
exactly the QBIC resonance for the incident angle of 3°, leading
to an SFG wavelength of λ1λ2∕�λ2 � λ2� � 742.359 nm. In
the SFG calculations, we assume a grating length of 1 cm is

used in the y direction to have a valid 2D grating structure,
and the power at SFG frequency is calculated by an integral
of its Poynting vector only at the lower output port. From
the results, it is clear that the SFG efficiency is enhanced by
a factor of 108 when both input wavelengths match the
QBIC wavelength, compared to the SFG effect through a bare
LiNbO3 thin film of the same thickness. To have the enhanced
SFG at a different target wavelength, keep the wavelength of λ1
at 2° and simply tune the incident angle of λ2, which will tune
the QBIC resonance to a different wavelength value. For ex-
ample, when the incident angle of λ2 is increased to 5°, the
QBIC resonance will switch to 1454.755 nm and the enhanced
SFG will then be around 736.246 nm. The SFG results for this
case are presented in Fig. 4(c).

One of the requirements to achieve a large efficiency for
nonlinear applications with multiple inputs is to have a large
modal overlap between the input beams within the nonlinear
medium to facilitate the interaction. For the SFG example, we
are using the 1D QBIC resonances on the high-frequency
branch in Fig. 3(d) for demonstration. As shown by the reso-
nance mode distributions in Figs. 3(a)–3(c), the modes exhibit
strong similarities at different incident angles, which indicate
that a large modal overlap can be achieved. The significantly
enhanced SFG efficiency shown above supports this point.
Since resonances on this branch exihibit larger Q factors at
smaller incident angles, it is advantageous to use lower incident
angles.

We note that all practical laser sources have certain band-
widths that may be larger than that of the QBIC, and it is only
the frequency component of the QBIC resonance whose local
electric field will be enhanced. Therefore, a laser source

Fig. 4. (a) Transmission spectra through the LiNbO3 thin film binary grating structure at three different incident angles of 2°, 3°, and 5°. The
geometrical parameters are: P � 835 nm, t � 350 nm, h � 80 nm, w � 80 nm, and δ � 5 nm. (b) and (c) SFG spectra when one input wave-
length is 1490.665 nm at a fixed incident angle of 2° while the other input beam is fixed, respectively, at (b) 3° and (c) 5° while its wavelength is
tuned. The red dashed lines correspond to the SFG through the bare LiNbO3 thin film of the same thickness.
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working in the continuous-wave mode with the central wave-
length matching the QBIC resonance is preferred as the input
for nonlinear applications. It may be challenging to achieve
spectral matching. Fortunately, this problem can be circum-
vented by simply tuning the incident angle, making use of
the superior property of continuous distribution with the
1D QBIC effect.

4. DISCUSSIONS AND CONCLUSION

The most significant feature of the 1D QBIC resonances with
the binary grating is that the QBICs can be continuously sup-
ported following the relation between the resonance wave-
length and the incident angle governed by Eq. (1). As a
result, one can achieve the QBIC resonance over a large spec-
trum by tuning the incident angle, and control the overall Q
factor of these 1D QBICs by manipulating the degree of struc-
tural asymmetry. The continuous distribution of the QBIC res-
onances over a broad spectral range is a significant advantage
over traditional QBIC resonances, which can only occur
around very few discrete positions. As a result, one can manipu-
late the light–matter interactions at any wavelength within the
range, by simply choosing the proper incident angle. As an ex-
ample, we have demonstrated in Section 3 an enhancement of
the SFG process with some spectral tunability by simply chang-
ing the incident angle of one input beam.

In summary, we have demonstrated in this work that a
binary grating structure composed of two ridge arrays with
the same period and slightly different ridge width located on
a waveguide slab can be employed to support the 1D QBIC
resonances along a continuous curve over a large spectral range
in the ω ∼ k space. The occurrence of the BIC/QBIC resonan-
ces at any wavelength over a broad spectral range for a structure
with fixed geometry makes it possible to achieve the enhanced
light–matter interactions with more freedoms compared to tra-
ditional BICs. We believe that these 1D QBICs can greatly
promote many applications requiring multiple input wave-
lengths, and have great applications in general nonlinear optics.
Furthermore, although we use the simple 1D grating structures
to demonstrate the formation of the 1D QBIC resonances, the
same methodology can be easily extended to more sophisticated
2D composite periodic elements or metasurface structures and
to other spectral ranges of the electromagnetic spectrum to have
enhanced interactions.
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