• Opto-Electronic Advances
  • Vol. 3, Issue 12, 200028-1 (2020)
Shaohao Wang1、6、*, Yuhua Li2、7, Brent E. Little3, Leiran Wang3、4, Xiang Wang5, Roy R. Davidson5, and Sai Tak Chu2
Author Affiliations
  • 1FZU-Jinjiang Joint Institute of Microelectronics, Jinjiang Science and Education Park, Fuzhou University, Jinjiang 362200, China
  • 2Department of Physics, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, China
  • 3State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China
  • 4University of Chinese Academy of Sciences, Beijing 100049, China
  • 5QXP Technology, Xi'an 710311, China
  • 6Department of Microelectronics Science and Technology, Qi Shan Campus, Fuzhou University, Fuzhou 350108, China
  • 7Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
  • show less
    DOI: 10.29026/oea.2020.200028 Cite this Article
    Shaohao Wang, Yuhua Li, Brent E. Little, Leiran Wang, Xiang Wang, Roy R. Davidson, Sai Tak Chu. Athermal third harmonic generation in micro-ring resonators[J]. Opto-Electronic Advances, 2020, 3(12): 200028-1 Copy Citation Text show less
    References

    [1] T Carmon, K J Vahala. Visible continuous emission from a silica microphotonic device by third-harmonic generation. Nat Phys, 3, 430-435(2007).

    [2] B Corcoran, C Monat, C Grillet, D J Moss, B J Eggleton et al. Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides. Nat Photonics, 3, 206-210(2009).

    [3] K Sasagawa, M Tsuchiya. Highly efficient third harmonic generation in a periodically poled MgO: LiNbO3 disk resonator. Appl Phys Express, 2, 122401(2009).

    [4] D Farnesi, A Barucci, G C Righini, S Berneschi, S Soria et al. Optical frequency conversion in silica-whispering-gallery-mode microspherical resonators. Phys Rev Lett, 112, 093901(2014).

    [5] M Asano, S Komori, R Ikuta, N Imoto, Ş K Özdemir et al. Visible light emission from a silica microbottle resonator by second- and third-harmonic generation. Opt Lett, 41, 5793-5796(2016).

    [6] H L Liu, Z B Zhang, Z C Shang, T Gao, X J Wu. Dynamically manipulating third-harmonic generation of phase change material with gap-Plasmon resonators. Opt Lett, 44, 5053-5056(2019).

    [7] J S Levy, M A Foster, A L Gaeta, M Lipson. Harmonic generation in silicon nitride ring resonators. Opt Express, 19, 11415-11421(2011).

    [8] L R Wang, L Chang, N Volet, M H P Pfeiffer, M Zervas et al. Frequency comb generation in the green using silicon nitride microresonators. Laser Photonics Rev, 10, 631-638(2016).

    [9] X Y Lu, G Moille, Q Li, D A Westly, A Singh et al. Efficient telecom-to-visible spectral translation through ultralow power nonlinear nanophotonics. Nat Photonics, 13, 593-601(2019).

    [10] J B Surya, X Guo, C L Zou, H X Tang. Efficient third-harmonic generation in composite aluminum nitride/silicon nitride microrings. Optica, 5, 103-108(2018).

    [11] X Guo, C L Zou, L Jiang, H X Tang. All-optical control of linear and nonlinear energy transfer via the Zeno effect. Phys Rev Lett, 120, 203902(2018).

    [12] J T Lin, N Yao, Z Z Hao, J H Zhang, W B Mao et al. Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator. Phys Rev Lett, 122, 173903(2019).

    [13] Y H Li, S H Wang, Y Y Tian, W L Ho, Y Y Li et al. Third-harmonic generation in CMOS-compatible highly doped silica micro-ring resonator. Opt Express, 28, 641-651(2020).

    [14] A Rodriguez, M Soljačić, J D Joannopoulos, G JohnsonS. χ(2) and χ(3) harmonic generation at a critical power in inhomogeneous doubly resonant cavities. Opt Express, 15, 7303-7318(2007).

    [15] X Y Zhang, Q T Cao, Z Wang, Y X Liu, C W Qiu et al. Symmetry-breaking-induced nonlinear optics at a microcavity surface. Nat Photonics, 13, 21-24(2019).

    [16] B D Liu, H K Yu, Z Y Li, L M Tong. Phase-matched second-harmonic generation in coupled nonlinear optical waveguides. J Opt Soc Am B, 36, 2650-2658(2019).

    [17] H Guo, M Karpov, E Lucas, A Kordts, M H P Pfeiffer et al. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat Phys, 13, 94-102(2017).

    [18] C Y Bao, Y Xuan, J A Jaramillo-Villegas, D E Leaird, M H Qi et al. Direct soliton generation in microresonators. Opt Lett, 42, 2519-2522(2017).

    [19] X X Xue, Y Xuan, C Wang, P H Wang, Y Liu et al. Thermal tuning of Kerr frequency combs in silicon nitride microring resonators. Opt Express, 24, 687-698(2016).

    [20] C Joshi, J K Jang, K Luke, X C Ji, S A Miller et al. Thermally controlled comb generation and soliton modelocking in microresonators. Opt Lett, 41, 2565-2568(2016).

    [21] B S Lee, M Zhang, F A S Barbosa, S A Miller, A Mohanty et al. On-chip thermo-optic tuning of suspended microresonators. Opt Express, 25, 12109-12120(2017).

    [22] W Q Wang, Z Z Lu, W F Zhang, S T Chu, B E Little et al. Robust soliton crystals in a thermally controlled microresonator. Opt Lett, 43, 2002-2005(2018).

    [23] C Wang, M Zhang, R R Zhu, H Hu, M Loncar. Monolithic photonic circuits for Kerr frequency comb generation, filtering and modulation. Nat Commun, 10, 978(2019).

    [24] Y He, Q F Yang, J W Ling, R Luo, H X Liang et al. A self-starting bi-chromatic LiNbO3 soliton microcomb. Optica, 6, 1138-1144(2019).

    [25] J D Jost, E Lucas, T Herr, C Lecaplain, V Brasch et al. All-optical stabilization of a soliton frequency comb in a crystalline microresonator. Opt Lett, 40, 4723-4726(2015).

    [26] H Zhou, Y Geng, W W Cui, S W Huang, Q Zhou et al. Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities. Light: Sci Appl, 8, 50(2019).

    [27] K Padmaraju, K Bergman. Resolving the thermal challenges for silicon microring resonator devices. Nanophotonics, 3, 269-281(2014).

    [28] T Carmon, L Yang, K J Vahala. Dynamical thermal behavior and thermal self-stability of microcavities. Opt Express, 12, 4742-4750(2004).

    [29] K Ikeda, R E Saperstein, N Alic, Y Fainman. Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides. Opt Express, 16, 12987-12994(2008).

    [30] Lee J M. Athermal silicon photonics//Pavesi L, Lockwood D J. Silicon Photonics Ⅲ: Systems and Applications. Berlin Heidelberg: Springer-Verlag, 2016.

    [31] Y Kokubun, N Funato, M Takizawa. Athermal waveguides for temperature-independent lightwave devices. IEEE Photonics Technol Lett, 5, 1297-1300(1993).

    [32] S T Chu, W G Pan, S Suzuki, B E Little, S Sato et al. Temperature insensitive vertically coupled microring resonator add/drop filters by means of a polymer overlay. IEEE Photonics Technol Lett, 11, 1138-1140(1999).

    [33] J Teng, P Dumon, W Bogaerts, H B Zhang, X G Jian et al. Athermal silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides. Opt Express, 17, 14627-14633(2009).

    [34] M M Milošević, N G Emerson, F Y Gardes, X Chen, A A D T Adikaari et al. Athermal waveguides for optical communication wavelengths. Opt Lett, 36, 4659-4661(2011).

    [35] V Raghunathan, T Izuhara, J Michel, L Kimerling. Stability of polymer-dielectric bi-layers for Athermal silicon photonics. Opt Express, 20, 16059-16066(2012).

    [36] S Namnabat, K J Kim, A Jones, R Himmelhuber, C T DeRose et al. Athermal silicon optical add-drop multiplexers based on thermo-optic coefficient tuning of sol-gel material. Opt Express, 25, 21471-21482(2017).

    [37] B Guha, J Cardenas, M Lipson. Athermal silicon microring resonators with titanium oxide cladding. Opt Express, 21, 26557-26563(2013).

    [38] S S Djordjevic, K P Shang, B B Guan, S T S Cheung, L Liao et al. CMOS-compatible, Athermal silicon ring modulators clad with titanium dioxide. Opt Express, 21, 13958-13968(2013).

    [39] J Ptasinski, I C Khoo, Y Fainman. Passive temperature stabilization of silicon photonic devices using liquid crystals. Materials, 7, 2229-2241(2014).

    [40] B Guha, B B C Kyotoku, M Lipson. CMOS-compatible athermal silicon microring resonators. Opt Express, 18, 3487-3493(2010).

    [41] L W Luo, G S Wiederhecker, K Preston, M Lipson. Power insensitive silicon microring resonators. Opt Lett, 37, 590-592(2012).

    [42] I Grudinin, H Lee, T Chen, K Vahala. Compensation of thermal nonlinearity effect in optical resonators. Opt Express, 19, 7365-7372(2011).

    [43] L Jin, L Di Lauro, A Pasquazi, M Peccianti, D J Moss et al. Optical multi-stability in a nonlinear high-order microring resonator filter. APL Photonics, 5, 056106(2020).

    [44] Y K Chembo, C R Menyuk. Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators. Phys Rev A, 87, 053852(2013).

    [45] C Godey, I V Balakireva, A Coillet, Y K Chembo. Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes. Phys Rev A, 89, 063814(2014).

    [46] OFC 2003 Optical Fiber Communications Conference, 444-445 (IEEE, 2003); http://doi.org/10.1109/OFC.2003.315925.

    [47] M Ferrera, L Razzari, D Duchesne, R Morandotti, Z Yang et al. Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures. Nat Photonics, 2, 737-740(2008).

    [48] D J Moss, R Morandotti, A L Gaeta, M Lipson. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat Photonics, 7, 597-607(2013).

    [49] R J Widlar. New developments in IC voltage regulators. IEEE J Solid-State Circuits, 6, 2-7(1971).

    Shaohao Wang, Yuhua Li, Brent E. Little, Leiran Wang, Xiang Wang, Roy R. Davidson, Sai Tak Chu. Athermal third harmonic generation in micro-ring resonators[J]. Opto-Electronic Advances, 2020, 3(12): 200028-1
    Download Citation