• Opto-Electronic Advances
  • Vol. 3, Issue 12, 200028-1 (2020)
Shaohao Wang1、6、*, Yuhua Li2、7, Brent E. Little3, Leiran Wang3、4, Xiang Wang5, Roy R. Davidson5, and Sai Tak Chu2
Author Affiliations
  • 1FZU-Jinjiang Joint Institute of Microelectronics, Jinjiang Science and Education Park, Fuzhou University, Jinjiang 362200, China
  • 2Department of Physics, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, China
  • 3State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China
  • 4University of Chinese Academy of Sciences, Beijing 100049, China
  • 5QXP Technology, Xi'an 710311, China
  • 6Department of Microelectronics Science and Technology, Qi Shan Campus, Fuzhou University, Fuzhou 350108, China
  • 7Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
  • show less
    DOI: 10.29026/oea.2020.200028 Cite this Article
    Shaohao Wang, Yuhua Li, Brent E. Little, Leiran Wang, Xiang Wang, Roy R. Davidson, Sai Tak Chu. Athermal third harmonic generation in micro-ring resonators[J]. Opto-Electronic Advances, 2020, 3(12): 200028-1 Copy Citation Text show less

    Abstract

    Nonlinear high-harmonic generation in micro-resonators is a common technique used to extend the operating range of applications such as self-referencing systems and coherent communications in the visible region. However, the generated high-harmonic emissions are subject to a resonance shift with a change in temperature. We present a comprehensive study of the thermal behavior induced phase mismatch that shows this resonance shift can be compensated by a combination of the linear and nonlinear thermo-optics effects. Using this model, we predict and experimentally demonstrate visible third harmonic modes having temperature dependent wavelength shifts between -2.84 pm/℃ and 2.35 pm/℃ when pumped at the L-band. Besides providing a new way to achieve athermal operation, this also allows one to measure the thermal coefficients and Q-factor of the visible modes. Through steady state analysis, we have also identified the existence of stable athermal third harmonic generation and experimentally demonstrated orthogonally pumped visible third harmonic modes with a temperature dependent wavelength shift of 0.05 pm/℃ over a temperature range of 12 ℃. Our findings promise a configurable and active temperature dependent wavelength shift compensation scheme for highly efficient and precise visible emission generation for potential 2f-3f self-referencing in metrology, biological and chemical sensing applications.
    $ \begin{array}{*{20}{l}} {\left( { - {\rm{i}}{\mathit{\Omega }_{\rm{p}}} - {\rm{i}}{\xi _{\rm{p}}}{\omega _{{\rm{p0}}}}\delta T - \frac{{{\kappa _{\rm{p}}}}}{2}} \right){a_{\rm{p}}}}\\ { - {\rm{i}}\left( {{\mathit{\Theta }_{\rm{p}}} + {g_{{\rm{pp}}}}} \right){I_{\rm{p}}}{a_{\rm{p}}} - {\rm{i}}\sqrt {{\kappa _{{\rm{pe}}}}} {p_{\rm{i}}} = 0, } \end{array} $ (1)

    View in Article

    $ \begin{array}{*{20}{l}} {\left( { - {\rm{i}}{\mathit{\Omega }_{\rm{t}}} - {\rm{i}}{\xi _{\rm{t}}}{\omega _{{\rm{t0}}}}\delta T - \frac{{{\kappa _{\rm{t}}}}}{2}} \right){a_{\rm{t}}}}\\ { - {\rm{i}}\left( {{\mathit{\Theta }_{\rm{t}}} + {g_{{\rm{tp}}}}} \right){I_{\rm{p}}}{a_{\rm{t}}} = {\rm{i}}{g_{{\rm{TH}}}}\hbar {\omega _{\rm{p}}}a_{\rm{p}}^3, } \end{array} $ (2)

    View in Article

    $ \Delta {\beta _{{\rm{total}}}} \approx \frac{{\Delta {n_{\rm{g}}}}}{c}\left[ {{\mathit{\Omega }_{\rm{t}}} + {\mathit{\Omega }_{{\rm{TL}}}}(\delta T) + {\mathit{\Omega }_{{\rm{TNL}}}}(\Delta T) + {\mathit{\Omega }_{{\rm{KNL}}}}} \right], $ (3)

    View in Article

    $ {I_{\rm{t}}} = \frac{4}{3} \cdot \frac{{g_{{\rm{TH}}}^2I_{\rm{p}}^3}}{{\mathit{\kappa }_{\rm{t}}^2 + 4{{\left[ {{\mathit{\Omega }_{\rm{t}}} + {\mathit{\Omega }_{{\rm{TL}}}} + {\mathit{\Omega }_{{\rm{TNL}}}} + {\mathit{\Omega }_{{\rm{KNL}}}}} \right]}^2}}}. $ (4)

    View in Article

    $ {{F}^{2}}=\left[ 1+{{\left( \rho -\alpha \right)}^{2}} \right]\rho , $ (5)

    View in Article

    $ {\mathit{\Omega }_{\rm{p}}} = {\mathit{\Theta }_{\rm{p}}}\Delta \tau \left| {\delta T} \right| + \sqrt {\frac{{{\kappa _{{\rm{pe}}}}{P_{\rm{i}}}}}{{{\tau _{\rm{t}}}\left| {\delta T} \right|}} - \frac{{\kappa _{\rm{p}}^2}}{4}} . $ (6)

    View in Article

    Shaohao Wang, Yuhua Li, Brent E. Little, Leiran Wang, Xiang Wang, Roy R. Davidson, Sai Tak Chu. Athermal third harmonic generation in micro-ring resonators[J]. Opto-Electronic Advances, 2020, 3(12): 200028-1
    Download Citation