• Photonics Research
  • Vol. 8, Issue 4, 503 (2020)
Lu Zhang1, Dongxu Zhou1, Yiping Lu1, Hongzhi Zhang1, and Guoquan Zhang1、2、*
Author Affiliations
  • 1MOE Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics and TEDA Applied Physics Institute, Nankai University, Tianjin 300457, China
  • 2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • show less
    DOI: 10.1364/PRJ.380590 Cite this Article Set citation alerts
    Lu Zhang, Dongxu Zhou, Yiping Lu, Hongzhi Zhang, Guoquan Zhang. Super-bunched focusing with chirped random-phase gratings[J]. Photonics Research, 2020, 8(4): 503 Copy Citation Text show less
    References

    [1] R. Hanbury Brown, R. Q. Twiss. Correlation between photons in two coherent beams of light. Nature, 177, 27-29(1956).

    [2] R. Hanbury Brown, R. Q. Twiss. A test of a new type of stellar interferometer on sirius. Nature, 178, 1046-1048(1956).

    [3] R. J. Glauber. The quantum theory of optical coherence. Phys. Rev., 130, 2529-2539(1963).

    [4] R. J. Glauber. Nobel lecture: one hundred years of light quanta. Rev. Mod. Phys., 78, 1267-1278(2006).

    [5] R. J. Glauber. Coherent and incoherent states of the radiation field. Phys. Rev., 131, 2766-2788(1963).

    [6] E. Sudarshan. Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett., 10, 277-279(1963).

    [7] L. Mandel, E. G. Sudarshan, E. Wolf. Theory of photoelectric detection of light fluctuations. Proc. Phys. Soc. Lond., 84, 435-444(1964).

    [8] J. Liu, Y. Shih. Nth-order coherence of thermal light. Phys. Rev. A, 79, 023819(2009).

    [9] T. B. Pittman, Y. H. Shih, D. V. Strekalov, A. V. Sergienko. Optical imaging by means of two-photon quantum entanglement. Phys. Rev. A, 52, R3429-R3432(1995).

    [10] D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, Y. H. Shih. Observation of two-photon ‘ghost’ interference and diffraction. Phys. Rev. Lett., 74, 3600-3603(1995).

    [11] A. Gatti, E. Brambilla, M. Bache, L. A. Lugiato. Ghost imaging with thermal light: comparing entanglement and classical correlation. Phys. Rev. Lett., 93, 093602(2004).

    [12] G. Scarcelli, A. Valencia, Y. Shih. Two-photon interference with thermal light. Europhys. Lett., 68, 618-624(2004).

    [13] A. Valencia, G. Scarcelli, M. D’Angelo, Y. Shih. Two-photon imaging with thermal light. Phys. Rev. Lett., 94, 063601(2005).

    [14] J. H. Shapiro. Computational ghost imaging. Phys. Rev. A, 78, 061802(2008).

    [15] Y. Bromberg, O. Katz, Y. Silberberg. Ghost imaging with a single detector. Phys. Rev. A, 79, 053840(2009).

    [16] K. Kuplicki, K. W. C. Chan. High-order ghost imaging using non-Rayleigh speckle sources. Opt. Express, 24, 26766-26776(2016).

    [17] J. Liu, J. Wang, H. Chen, H. Zheng, Y. Liu, Y. Zhou, F. Li, Z. Xu. High visibility temporal ghost imaging with classical light. Opt. Commun., 410, 824-829(2018).

    [18] Y. R. Shen. Quantum statistics of nonlinear optics. Phys. Rev., 155, 921-931(1967).

    [19] P. Lambropoulos. Field-correlation effects in two-photon processes. Phys. Rev., 168, 1418-1423(1968).

    [20] B. R. Mollow. Two-photon absorption and field correlation functions. Phys. Rev., 175, 1555-1563(1968).

    [21] G. S. Agarwal. Field-correlation effects in multiphoton absorption processes. Phys. Rev. A, 1, 1445-1459(1970).

    [22] A. Jechow, M. Seefeldt, H. Kurzke, A. Heuer, R. Menzel. Enhanced two-photon excited fluorescence from imaging agents using true thermal light. Nat. Photonics, 7, 973-976(2013).

    [23] Y. Bromberg, Y. Lahini, E. Small, Y. Silberberg. Hanbury Brown and Twiss interferometry with interacting photons. Nat. Photonics, 4, 721-726(2010).

    [24] A. Allevi, M. Bondani. Direct detection of super-thermal photon-number statistics in second-harmonic generation. Opt. Lett., 40, 3089-3092(2015).

    [25] A. Allevi, S. Cassina, M. Bondani. Super-thermal light for imaging applications. Quantum Meas. Quantum Metrol., 4, 26-34(2017).

    [26] R. H. Dicke. Coherence in spontaneous radiation processes. Phys. Rev., 93, 99-110(1954).

    [27] S. Swain, P. Zhou, Z. Ficek. Intensity-intensity correlations and quantum interference in a driven three-level atom. Phys. Rev. A, 61, 043410(2000).

    [28] V. V. Temnov, U. Woggon. Photon statistics in the cooperative spontaneous emission. Opt. Express, 17, 5774-5782(2009).

    [29] A. Auffëves, D. Gerace, S. Portolan, A. Drezet, M. Franca Santos. Few emitters in a cavity: from cooperative emission to individualization. New J. Phys., 13, 093020(2011).

    [30] I.-C. Hoi, T. Palomaki, J. Lindkvist, G. Johansson, P. Delsing, C. Wilson. Generation of nonclassical microwave states using an artificial atom in 1D open space. Phys. Rev. Lett., 108, 263601(2012).

    [31] T. Grujic, S. R. Clark, D. Jaksch, D. G. Angelakis. Repulsively induced photon superbunching in driven resonator arrays. Phys. Rev. A, 87, 053846(2013).

    [32] D. Bhatti, J. Von Zanthier, G. S. Agarwal. Superbunching and nonclassicality as new hallmarks of superradiance. Sci. Rep., 5, 17335(2015).

    [33] H. A. M. Leymann, A. Foerster, F. Jahnke, J. Wiersig, C. Gies. Sub- and superradiance in nanolasers. Phys. Rev. Appl., 4, 044018(2015).

    [34] F. Jahnke, C. Gies, M. Assmann, M. Bayer, H. A. Leymann, A. Foerster, J. Wiersig, C. Schneider, M. Kamp, S. Hofling. Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers. Nat. Commun., 7, 11540(2016).

    [35] C. Redlich, B. Lingnau, S. Holzinger, E. Schlottmann, S. Kreinberg, C. Schneider, M. Kamp, S. Hofling, J. Wolters, S. Reitzenstein, K. Lüdge. Mode-switching induced super-thermal bunching in quantum-dot microlasers. New J. Phys., 18, 063011(2016).

    [36] F. Arecchi, U. Bortolozzo, A. Montina, S. Residori. Granularity and inhomogeneity are the joint generators of optical rogue waves. Phys. Rev. Lett., 106, 153901(2011).

    [37] M. Leonetti, C. Conti. Observation of three dimensional optical rogue waves through obstacles. Appl. Phys. Lett., 106, 254103(2015).

    [38] T. S. Iskhakov, A. Pérez, K. Y. Spasibko, M. Chekhova, G. Leuchs. Superbunched bright squeezed vacuum state. Opt. Lett., 37, 1919-1921(2012).

    [39] Y. Zhou, F.-L. Li, B. Bai, H. Chen, J. Liu, Z. Xu, H. Zheng. Superbunching pseudothermal light. Phys. Rev. A, 95, 053809(2017).

    [40] B. Bai, J. Liu, Y. Zhou, H. Zheng, H. Chen, S. Zhang, Y. He, F. Li, Z. Xu. Photon superbunching of classical light in the Hanbury Brown–Twiss interferometer. J. Opt. Soc. Am. B, 34, 2081-2088(2017).

    [41] I. Straka, J. Mika, M. Ježek. Generator of arbitrary classical photon statistics. Opt. Express, 26, 8998-9010(2018).

    [42] P. Hong, J. Liu, G. Zhang. Two-photon superbunching of thermal light via multiple two-photon path interference. Phys. Rev. A, 86, 013807(2012).

    [43] X. Liu, M. Li, X. Yao, W. Yu, G. Zhai, L. Wu. High-visibility ghost imaging from artificially generated non-Gaussian intensity fluctuations. AIP Adv., 3, 052121(2013).

    [44] Y. Bromberg, H. Cao. Generating non-Rayleigh speckles with tailored intensity statistics. Phys. Rev. Lett., 112, 213904(2014).

    [45] N. Bender, H. Ylmaz, Y. Bromberg, H. Cao. Customizing speckle intensity statistics. Optica, 5, 595-600(2018).

    [46] L. Zhang, Y. Lu, D. Zhou, H. Zhang, L. Li, G. Zhang. Superbunching effect of classical light with a digitally designed spatially phase-correlated wave front. Phys. Rev. A, 99, 063827(2019).

    [47] P. Hong, L. Xu, Z. Zhai, G. Zhang. High visibility two-photon interference with classical light. Opt. Express, 21, 14056-14065(2013).

    [48] J. Liu, G. Zhang. Unified interpretation for second-order subwavelength interference based on Feynman’s path-integral theory. Phys. Rev. A, 82, 013822(2010).

    [49] P. Hong, G. Zhang. Subwavelength interference with an effective entangled source. Phys. Rev. A, 88, 043838(2013).

    [50] P. Hong, G. Zhang. Super-resolved optical lithography with phase controlled source. Phys. Rev. A, 91, 053830(2015).

    [51] L. Li, P. Hong, G. Zhang. Experimental realization of Heisenberg-limit resolution imaging through a phase-controlled screen with classical light. Opt. Express, 26, 18950-18956(2018).

    [52] D. Hunter, R. Minasian, P. Krug. Tunable optical transversal filter based on chirped gratings. Electron. Lett., 31, 2205-2207(1995).

    [53] X. Gu, S. Akturk, R. Trebino. Spatial chirp in ultrafast optics. Opt. Commun., 242, 599-604(2004).

    [54] G. Qi. Optical beams in media with spatial dispersion. Chin. Phys. Lett., 20, 64-67(2003).

    [55] J. Azaña, M. A. Muriel. Temporal self-imaging effects: theory and application for multiplying pulse repetition rates. IEEE J. Sel. Top. Quantum Electron., 7, 728-744(2001).

    [56] M. Lewis, C. West. Some focusing properties of chirped gratings. Opt. Quantum Electron., 21, 17-33(1989).

    [57] X. Lv, W. Qiu, J. Wang, Y. Ma, J. Zhao, M. Li, H. Yu, J. Pan. A chirped subwavelength grating with both reflection and transmission focusing. IEEE Photon. J., 5, 2200907(2013).

    [58] D. Feng, Y. Yan, G. Jin, S. Fan. Beam focusing characteristics of diffractive lenses with binary subwavelength structures. Opt. Commun., 239, 345-352(2004).

    [59] J. Yoon, K. Choi, S. H. Song, G. Lee. Subwavelength focusing of light from a metallic slit surrounded by grooves with chirped period. J. Opt. Soc. Korea, 9, 162-168(2005).

    [60] F. Lu, F. G. Sedgwick, V. Karagodsky, C. Chase, C. J. Chang-Hasnain. Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings. Opt. Express, 18, 12606-12614(2010).

    [61] D. Feng, C. Zhang. Optical focusing by planar lenses based on nano-scale metallic slits in visible regime. Phys. Proc., 22, 428-434(2011).

    [62] G. Chen, K. Zhang, A. Yu, X. Wang, Z. Zhang, Y. Li, Z. Wen, C. Li, L. Dai, S. Jiang, F. Lin. Far-field sub-diffraction focusing lens based on binary amplitude-phase mask for linearly polarized light. Opt. Express, 24, 11002-11008(2016).

    [63] G. Chen, Y. Li, X. Wang, Z. Wen, F. Lin, L. Dai, L. Chen, Y. He, S. Liu. Super-oscillation far-field focusing lens based on ultra-thin width-varied metallic slit array. IEEE Photon. Technol. Lett., 28, 335-338(2016).

    [64] L. M. Sanchez-Brea, F. J. Torcal-Milla, T. Morlanes. Near-field diffraction of chirped gratings. Opt. Lett., 41, 4091-4094(2016).

    [65] N. Gao, H. Li, X. Zhu, Y. Hua, C. Xie. Quasi-periodic gratings: diffraction orders accelerate along curves. Opt. Lett., 38, 2829-2831(2013).

    [66] M. C. Hettrick, S. Bowyer, R. F. Malina, C. Martin, S. Mrowka. Extreme ultraviolet explorer spectrometer. Appl. Opt., 24, 1737-1756(1985).

    [67] W. R. McKinney. Varied line-space gratings and applications. Rev. Sci. Instrum., 63, 1410-1414(1992).

    [68] C. L. Lawson, R. J. Hanson. Solving Least Squares Problems, 15(1995).

    Lu Zhang, Dongxu Zhou, Yiping Lu, Hongzhi Zhang, Guoquan Zhang. Super-bunched focusing with chirped random-phase gratings[J]. Photonics Research, 2020, 8(4): 503
    Download Citation